6평 21번, 심층분석 및 다항함수의 전개
게시글 주소: https://d.orbi.kr/00012187583
21번의 수험생의 가장 상식적인 풀이에 대하여 알아봅시다.
---------------------위는 요약이고 상식적인 풀이를 정리해봅시다.--------------------
처음에는 단순히 인수정리로 f(x)=(x-1)p(x)라 둔 후, 정리하고 또 p(x)=(x-1)q(x)라 둔 후 정리해서 다음까지는 온 학생이 많았을 것입니다. (물론, 핵심이 느껴져서 f(x)=(x-1)^n p(x)라 뒀으면 그 자체로 훌륭한 것이고요.)
이렇게 논리적으로 f(x)를 구했는데 여기서 바로 두번째 극한으로 넘어가지 말고, 식을 직관적으로 이해하려는 시도가 필요합니다. 주어진 식에서 3이 무엇을 의미할까? 생각해보면 인수정리를 여러번 하면서도 느꼈겠지만 f(x)에서 (x-1)이라는 인수가 몇번 들어가 있느냐?가 극한값임을 파악할 수 있습니다. 항상 이렇게 직관적으로 느껴보는 것이 필요함을 명심하도록 하구요. 거의 모든 어려운 문제는 직관과 논리를 오가며 풀이가 진행됩니다.
처음부터 (x-1)^n이 중요하다고 생각한 학생은 훌륭하지만, 그렇지 못한 학생이라도 (x-1)^3을 구한 후에는 직관적으로 느낄려고 노력하는 과정이 필요합니다.
여기까지 왔는데, 함수의 극한값을 구할 때에는 모두 수렴하는 함수로 표현하는 것이 핵심입니다.
앞에 주어진 극한인 의 의미를 파악한 상태에서 이를 이용하기 위해 식을 변형해봅시다.
인데 의 의미를 생각하면, 아래와 같이 극한값이 한정되는 것을 알 수 있습니다.
물론 직관적으로 못느낀 학생이라면 또 g(x)=x p(x), p(x)= x q(x) 등 무한 인수정리를 반복해야합니다. 최소한 f(x)=x^m p(x), g(x)=x^n q(x)라 식을 세웠다면 조금이라도 삘이 온 학생이겠죠.
이므로 이 됩니다.
따라서 f(x)에서는 x의 인수가 1개 존재해야 하므로 f(x)=x(x-1)^3이고 g(x)에서 x의 인수가 3개 존재해야 하므로 g(x)=x^3이다.
-----------------------------------------------------------------
문제 풀이는 여기서 끝입니다.
-----------------------------------------------------------------
포인트를 몇가지 분석해봅시다.
사실 인수정리를 한 번쓰는 문제야 수도 없이 출제가 되었지만 이렇게 1번 2번 3번쓰고 거기에 미분까지 동원해야하는 문제는 이 문제가 유일합니다. 유사한 발상을 한 번도 경험해보지 않은 학생에게는 매우 어려웠을 것인데, 이 발상은 (x-a)^n의 중복도와 매우 깊은 관계가 있는 다음 유명한 극한에서 자주 나오는 발상입니다.
(x-a)^1으로 나온 문제는 많이 봤을것이고, 다음 문제 (x-a)^2 또한 조금만 어려운 문제집을 경험해봤다면 자주 봤을 문항인데요.
위 문제에서 인수정리에 의하여 f(x)=(x-a)g(x)이라 한 후, 대입하고 또 g(x)=(x-a)h(x)라 한 후 대입 그리고
두 식을 미분해서 정리해야 f'(a), f''(a)를 찾을 수 있습니다. 물론 f(x)=ax^n ... 이라 두고 푸는건 자유이긴 하나 일반적으로 증명하기 위해선 인수정리가 온당합니다. 이 식은 실제로 고려대 논술에서도 출제가 되었고 유명한 주제이기도 하니 한번 쯤 경험해두도록 합시다.
한가지 주제를 더 보도록 할텐데, 다음은 교과서에 있는 내용입니다.
교과서의 조립제법 내용인데 위의 내용은 거의 모든 교과서에서 탐구활동이나 문제로 출제가 되고 있습니다.
즉, 위를 보면 모든 다항함수는 f(x)=ax^3+bx^2+cx+d=p(x-1)^3+q(x-1)^2+r(x-1)+s 정도로 얼마든지 정리할 수 있음을 알 수 있고요. 솔직히 공부를 많이한 학생이라면 이정도는 눈에 들어올 것이고, 어려운 문제집에서 접해본 경험도 있을 것입니다. 그런 학생일수록 직관적으로
와 같은 식이 인수 (x-1)^n을 뜻한다는 것이 훨씬 더 잘 와닿을 것입니다. 평소에 많이 경험을 해보고 문제를 풀어보는 것의 중요성이고, 그 과정에서 직관력과 논리력이 모두 늘 것입니다. 위와 같이 발상이 되는 사람은
으로 주어진 식에 대입하면 b=c=d=0과 a=/=0이 매우 쉽게 관찰될 것이고, (x-1)이라는 인수의 중복도가 중요함을 즉각적으로 눈치챌 수 있을 것입니다. 그게 된다면 뒤 극한부터도 일사천리이고요. 여기까지 이해하고, 다음 기출문제를 봅시다.
이 기출문제에서 x->0을 보면 우리 기출을 많이 보고 열심히 풀고 결과까지 외운 학생들은 최저차항의 계수를 뜻한다는 것을 쉽게 알 수 있을 것입니다.
위와 같이 평행이동되어 응용된다 해도, 제대로 기출을 공부한 학생이라면 c=d=0, b=2가 바로 보이는 학생이 되면 좋겠죠. 즉 (x-1)^2을 인수로 갖는 것이고, 그 계수가 2라는 것이죠.
이제 이 글 http://orbi.kr/00012149457 을 다시 보면 왜 발상적인 풀이가 아닌지 느껴질 것입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
명문대인데
-
으으 맩날아재개그만치고
-
첫날부터도 좀 어이없긴했는데 이거 쓰면 읽긴읽냐
-
쉽지않네... 4
-
이게 사람이 존나 정신머리가 딸리면 이럴 수도 있나 학원 여기다 쓰면 특정될것같은데
-
파란색 아니었나
-
여행지리라는 과목이었는데.. 절대 자기 시간엔 책도 피지 말라고 함 인강 보면 크게...
-
할라믄 가장 신경써야 할 점이 머임ㅔ
-
긍정적분#9999 친추요망.
-
뼈문과인가요??
-
사실 매일 하고 있음
-
제가 한 피구 했었죠 22
잡는거 던지는거 피하는거 다 잘했어요 빨리 ㄱㅁ 달아주세요
-
인강 개념교재 하나 보면서 기출 실모 벅벅하면 다른 커리는 필요 없는 것 같은데
-
하 자야지 0
-
3년만에 입시판에 들어갈려 합니다. / 부제 : 이런 경우에는 군수를 안 하는 게 맞나요? 2
현역 때 수능은 망쳤지만 운 좋게 대학은 잘 간 04년생입니다. 군대를 21살...
-
이 사람이 좀 나가줘야하는디...
-
어딜가나 특정될거같애
-
ㅇㅈ 12
전역 3주 남음 끼얏호우
-
어쩌다가 일케 됐지...
-
쓰레기 죽어
-
학원을 착실히 다녀서 과고에 가고 싶구나..
-
숙대 자전에 정시로 최초합 했는데요... 고 3때 내신공부+학교 수업+학습방향못잡음...
-
찾아봐도안나오네
-
ㅠㅠ
-
아~~~.그때가.참.그립구나.~~
-
고1로 돌아갈 수 있음 감 너무 후회되는 일들이 많다..
-
전전 13번 제발ㅠㅠㅠㅠ......
-
사실 저도 연막 2
이고 서울대 경제학부에 지원하여 핵펑크 1칸합격의 주인공일 가능세계는 없는걸까
-
에혀..
-
피터팬 말고 그 군대에 있는 ㅈㄴ큰거요 저는 고등학교때 기숙사에서 봤어요 아침에...
-
이때아님 언제싸냐 에휴뇨이
-
있으신가요?
-
오야스미 2
네루!
-
코너스톤 10
마약n제 자유사고 n제 오버컴 더 크리티컬 포인트
-
나랑하하호호하는사람들이 현실에서는눈도못맞추는명문대생이라는게 이상함
-
점심시간에 군중 중의 고독 즐기며 혼자 밥먹기 여자애들한테 경멸이랑 개인 카톡으로...
-
홈베이스에 있는 큰 쇼파 같은 곳에 그냥 누워서 자고 있다보면 중간중간 지친 애들이...
-
사탐만 or 과탐만 선택할 수 있다고 부장쌤이 말씀하셨는데 알고 보니...
-
고등학교가 좀 그립다 16
저녁먹고 야자 전에 친구들이랑 피크닉 빨면서 노가리까기 야자때 몰래 나와서 탁구치기...
-
체스하실분 19
초보자만 ㄱㄱ
-
유독 수능날이랑 설대 정시 발표날에 맘이 싱숭생숭함 2
나만 그런가
-
외치죠 다시 한번 나!를! 사랑해줘 내 맘속 작은 바램이 비가되어내려오며언 사랑비가내려어아ㅏ아아ㅏㄱ
-
얼마 전까지만 해도 오르비에 새벽감성 짝사랑 주접글 쓰고 있었는데 오늘은 왠지...
-
연막 ㅈㄴ치면 좋은 점 10
상대방이 내가 어디 학교 어디 과인지 모름 단점: 나도 내가 뭐로 연막쳤는지 까먹음
-
고딩 때로 돌아가고 싶다 공부 안한다는 전제 하에 다시 가고 싶음
-
망했다 편지 써야 하는데 축하금은 덕코로 받아요!
사진이안뜨는것같은데요
혹시 보이면 댓글좀 부탁드려요!
갓갓
이 글 이해원하는분들은 지금이라도 http://atom.ac/books/3853 를 구입하셔서 3회독을 하시면
이런 글을 쓸 수 있습니다
머장님 1, 2 번째사진빼고 싹엑박뜹니다 ㅠㅠ
새벽부터 감사합니다 ㅋㅋ 이제 보이나요?
네네 ! 좋은자료 항상 감사합니다 !
갓갓..
21번 심층분석 ㄷㅅㅂㄱ
머장님 감사합니다!!
어 저도 sinx 나와서 x 곱해서 풀었는데 극한식에서 막 이렇게 곱해도 되나 궁금했는데 시중풀이가 저처럼 푼 풀이가 없었어요... 역시 해원님!!!!
30번 다항함수 풀때는 한완수 도움 많이 받았습니다 감사합니다
잘 푸셨네요 대단하세요 ㅋㅋ
윽 한번 이렇게 냈으니 올해 다시는 킬러로 이런 스타일은 못나오겠구만요
그것보다는 인수정리 등 논리적 계산을 거치면서도 그 식이 가지는 의미를 직관적으로 파악하려고 노력하는 과정. 킬러문제에서 항상 반복되는 직관과 논리를 오가며 풀이가 진행되는 과정 등을 파악하는 것이 공부겠죠ㅎㅎ
리미트가 분모 분자로 배분될때 분자가 0으로 가면 어떻하나.. 하는 생각에 쉽사리 배분을 못했는데 의문점을 한방에 해결해주시는군요. 감사합니다. 한완수도 호기심이 생기네요.
이해원모의고사 언제나와요?
(x-1)^n놓고 꽤 쉽게 풀었는데 끝나고보니 21이 가장 어렵단 말이 많더군요
딱 저렇게 풀어서 거의 6분컷...그리고 29번에서 털렸죠 ㅠ