어떻게 한 점과 법선벡터로 평면이 정의될까?+벡터는 왜 필요할까? & 치환적분과 부분적분은 어떻게 할까?
게시글 주소: https://d.orbi.kr/00013005601
공부는 그저 앉아있기만 해서 느는 것이 아닙니다. 성장하고 발전해야합니다.
그러므로, 질문의 중요성은 강조해도 지나치지 않습니다.
교과서에도 계속해서 질문을 여러분께 건네주곤 합니다. 한번 예를 들어볼까요?
(출처 : 미X엔 미적분 2 교과서 본문)
이런 식으로 교과서의 본문에서도 질문을 건네주고 시작합니다.
그렇다면, 여러분이 위 질문으로 당연히 생각해야하는 것은 이런것입니다.
왜 삼각함수의 값의 부호가 그렇게 될까?
왜 삼각함수의 합을 하나의 삼각함수로 나타내야할까?
시간이 된다면 그 역사를 공부하는 것도 좋지만, 그게 아니더라도 어디에 쓰이는지는 정리해주셔야합니다.
이렇게 생각하면서 공부하는 방식이 여러분의 공부에 필요합니다.
그래야 여러분이 더 확실한 개념을 가지게 됩니다. 모르는 것을 채워나가게 됩니다.
그것이 제가 질문칼럼을 올리고 있는 이유입니다.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
- 공부의양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
이렇게 쉽고 기본적인 내용이 어디에 도움이 될까요? : http://orbi.kr/00011592572
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? :
http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까? : http://orbi.kr/00011115763
유리화는 왜하는걸까? & 판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? : http://orbi.kr/00011420287
판별식이 음수일때 왜 이차방정식은 항상 0보다 클까? & log a b 에서 a>0, a≠1이어야 할까?
http://orbi.kr/00011521076
log a b 에서 왜 a>0, a≠1이어야 할까? & 근과 계수의 관계를 어떻게 유도할까?:http://orbi.kr/00011588911
근과 계수의 관계를 어떻게 유도할까?& 왜 벡터의 크기를 제곱하면 내적이 나올까? http://orbi.kr/00011613898
왜 벡터의 크기를 제곱하면 내적이 나올까? & 이 점은 변곡점인가요http://orbi.kr/00011893846/
이 점은 변곡점인가요? & 정규분포의 표준화는 왜하는걸까? https://orbi.kr/00012108382
정규분포의 표준화는 왜하는걸까? & 변곡점은 어떤 점일까?
https://orbi.kr/00012254198
저번 칼럼은 이거였습니다!
변곡점은 어떤 점일까? & 어떻게 한 점과 법선벡터로 평면이 정의될까? & 벡터는 왜 필요할까? https://orbi.kr/00012680627
갑니다.
바쁘신분은 8분 52초부터 보세여.
요약하자면 다음과 같습니다.
방향벡터는 기울기와 같습니다.
하지만 우리는 u벡터=(a,b)와 기울기 m=b/a가 같음을 알지만
u벡터가 (a,b,c)만 되어도 기울기로 표현하기 힘든 것을 압니다.
기울기는 결국 y의 변화량을 x의 변화량으로 나눈것입니다.
3차원에서는 그 변화량을 알고싶지만, 분수로 표현하기에는 너무나 많은 것입니다.
그래서 벡터로 표시했으며, 이 방향벡터는 성분 하나로 표시된 위치벡터이기에 각을 구하기도 쉽습니다.
원점 O를 시점으로 하므로, 원점을 중심으로 회전한 정도를 구하면 되니까요!
또한, 평면의 결정조건과 연결지어서 평면의 방정식을 구해보았습니다.
그리고, 제발 공간도형 파트의 평면의 결정조건, 도형사이의 위치관계에 대한 공부는 하시길바랍니다.
다음 칼럼 주제 갑니다.
질문은 이렇게나 중요합니다.
우리가 모르는 것이 질문으로 나오기 마련입니다.
반드시, 질문을 해결하시면서 공부하시길 바랍니다. 지금 하고있는 공부에 질문만 추가하셔도 좋습니다.
공부는 그저 앉아있기만 해서 느는 것이 아닙니다. 성장하고 발전해야합니다.
답은 다음 칼럼에 달겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
둘중에 어디감
-
나 초6때 메인글 마냥 과외쌤한테 존나 폐급짓했네 ㅋㅋㅋㅋㅋㅋㅋ
-
일단 들어가기 앞서 요즘 금융시장 불황이라 금융권 진입 고민도 생길 있는데,...
-
수학2 자작문제 5
과거 2130이 킬러였던 나형 기준 어려운 29 ~ 쉬운 21 난이도고 현재는 공통...
-
재수학원 인강 1
재수종합학원 자습시간에 그 학원에서 제공하는 인강외의 다른 인강(메가스터디,대성...
-
케리아 : 쉽지 않다 도란 : 소화하기 쉽지 않다, 소화가 잘 안될것같지만 나쁘지는...
-
무안공항서 항공기 활주로 이탈해 충돌 [사진 출처 : 연합뉴스] ■ 제보하기 ▷...
-
모닝 와리 0
부히히 야스오 재밋어
-
겨울방학만 다닐거라서 상담신청같은거 아예 다 신청안함했는데 괜찮겠죠??
-
찾습니
-
이거 붙을까요? 0
11명 뽑고 작년 추합 7명 돌았구요 지금 실지원 39명중 3등이고 전체지원...
-
ㅈㄱㄴ
-
급식 먹는거 보니까 교실에 들어가서 밥 먹던데 빵 같응거 들고와서 교실 내에서 먹어도 될까요??
-
아직도 안잤다 4
이러다 10시나 10시 좀 넘어서 잠들거같음
-
국민대ai빅데이터융합경영/인문vs 숭실대 자유전공학부 인문 2
다군에 7칸짜리 안정 이거 2개 중 하나 박으려고 하는데 뭐가 더 나을까요? 제가...
-
유대종 0
언매총론 일주일에 몇강씩 올라옴? 계획표 이런거 언제 올라오나여 그리고 25...
-
Qna 수 보니깐 무조건임
-
2칸도 안나오는 서성한 공대에 스나할까
-
인설의 -> 연대 계약 31
1. 6잘9망이라 수능때 어떤 변수가 생길지몰라 연대 1차 논술치러 감. 2....
-
작년에 정시 고려대의대, 성균관대의대 면접 준비하신분 0
대치동에서 수업들으셨나요? 지방이라 정보가 없네요.. 인적성면접 기출만 준비하고...
-
제목 그대로입니당
-
토익치고 올게요 5
ㄱㄱ혓
-
아가 기상 11
부지런행
-
건대 칸수 표본 1
표본 그냥 계속 늘어나네요 ㅋㅋ.. 끝까지 이럴까요? 5에서 3.. 하하 지원자들...
-
서성한까지는 내년수능보면 될거같다는 생각이 드는디 서연고는 시발 어캐가는거지? 96...
-
14명 뽑는 과이고 아직 업뎃 안됐지만 이월되어서 17명 뽑을 예정인 과입니다...
-
이상한 꿈 2
사문 실모를 품 왜인지 채점을 안함 그렇게 10개가 쌓여있음 그러다 채점함 1페부터...
-
이거 붙습니까? 4
똑같은글 계속 올려서 죄송합니다ㅠㅠㅠㅠ 정시가 처음이라서 도저히 진정이 되질...
-
기상 1
-
새로운 장소에 혼자 오니까 떨리네 설레기도하고
-
ㅇㅂㄱ 3
얼부기
-
8명 모집하는과 37명중 2등, 전체지원자 215명중 4등이고 진학사는 13등까지...
-
부산경북 라인 하위과이고 5명 모집중입니다. 78명중 2등 유지하다가 78명중...
-
안뇽 0
굿모닝
-
아무렇지 않은것처럼
-
사탐을 하자니 설공을 포기하는 게 너무 커서...
-
. 12
.
-
슬슬 잘시간이네 3
근데 안 졸리고 안 피곤한데
-
ㅇㅂㄱ 0
3시간 잠요...
-
한 2년 전부터 새로 들어오는 여자쌤들 다 개이쁨
-
거부감이 들거든 인위적인 느낌
-
진학사 칸수 1
가나 66칸으로 쓰려했는데 크리스마스 이후가 젤 정확하다해서 지금 들어가보니까...
-
닉변완료 0
팀 06 ㅎㅇㅌ
-
계산이 어떻게 되는 건가요..? 3년동안의 전과목 계산했을 때 2점대 초반이였는데...
-
진학사 적정표본수 확보인데 모집 인원보다 최초합 인원이 훨씬 적은 건 왜 그런건가요?
-
아쉬운부분
-
연대 경영 정시로 뚫을라면 확통 사탐 기준 몇개 틀려야 하나요? 3
뷸수능 기준 영어 제외 1 가정하에 확통 정법 윤사로요
-
한성대 과 질문 1
상상력인재학부가 자유전공이고 It공과대학은 나중에 컴공등 공과대학 전공을 선택하는...
-
귀찮아
-
언제까지나 과거에 머물러있을 수는 없다
많은 의견과 질문바랍니다. 답변드릴게요.
좋은 글 감사합니다~~
학생들이 미분에서 가장 중요시 생각해야 할점을 종종 물어보곤하는데 저는 그래프개형이라고 말하곤합니다 올바른것일까요..?
저는 기울기를 언급합니당
접선의 기울기. 즉, 접선이 왜 필요한지를 생각합니다.
그리고 증가감소와 극대극소를 이용해서 그래프를 그리고 해석합니다.
이 두가지인 것 같습니다.
미분한다는 것은 ~ 에서 오타 있네요
lim x->0 을 h->0으로 ...!
아 맞습니다. 감사합니다.
흥미로운 칼럼을 써주셔서 감사합니다. 항상 재밌게 읽고 있습니다.
감사합니다
위치+방향or내적
궁금한게 있습니다.
칼럼의 주제와 관계는 없지만, "미분가능한 함수를 미분하면 그도함수의 연속성을 보장할수없다"라는것을 교과개념에서 유추할수있나요? 일단, "적분과 미분과의 관계를 적용가능할 조건이 f가 연속인데, 부정적분관점에서 보면 f는 도함수이고
도함수가 연속인 함수는 미분가능하다"라고는 유추가 가능하지만, 앞에서 언급한 부분은 가능한지 모르겠습니다.
미적분 1의 개념으로 이해하고 유추할 수 있습니다.
도함수가 연속인 함수는 미분가능하다는 말은 맞습니다. 미분가능의 정의는 미분계수정의에서 좌, 우극한이 같아 함수의 극한이 존재할때 성립합니다. 연속이라는 것은 극한과 함숫값이 같다는 것입니다.
이 상황에선 도함수의 극한이 존재한다는 것입니다.
다만, 미분가능하다는 말로 도함수의 연속을 보장할 수는 없습니다.
미분가능하다는 말은 극한값이 존재한다는 말인데, 연속은 극한값과 함숫값이 같을때를 말합니다. 함숫값까지 존재한다고 보장할수는 없습니다.
치환적분은 합성함수 미분법 역연산이라고 볼 수 있고, 부분적분은 곱의 미분법의 역연산이라고 볼수 있고,
피적분함수의 형태가 복잡할 때, 합성함수/ 함수의 곱 꼴을 잘 적용시켜서 적분을 하는 것인가요??