회원에 의해 삭제된 글입니다.
게시글 주소: https://d.orbi.kr/00019274293
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
얼리버드 기상 0
학교로.....
-
올해 수능칠건 아니지만 지금 상황보면 독서문학언매 전부 22독서 24문학 24언매...
-
6-8~6-10 제재 알려주실 분 제발요 쪽지로 알려주세요ㅠㅠ 부탁드립니다
-
오늘은 베나구
-
궁금하네 난항상 페이커 우승횟수만큼줌
-
언매 공부법 0
평가원 언매 항상 0-3틀인데요, 언매는 2학년 내신 때만 하고 지금까지 쭉...
-
김승리 듣고있었는데, 지금 며칠 안 남은 상태에서 수특수완 보는건 불가능 할 것...
-
무조건 곡예사인게 조광일이 요즘 유튜브에서 안 보이잖음ㅇㅇ
-
진짜비염존나싫다 0
일부러 룸메 잘때들어왓더니 콧구멍으로 피리불면서 자 난어케자노..
-
적중고트였는데
-
소설책이나 한 권 더 살걸
-
벌목정정이랬거니 아람도리 큰솔이 베혀짐즉도 하이 골이 울어 메아리 소리 쩌르렁...
-
얼버기 0
레전드얼버기 어제일찍자서일찍일어남
-
이거 못고치나
-
관동별곡 유씨삼대록 옥린몽 세개중에 하나는 나올려나 2
문학중에 이거 3개만 안했는데 일어나서라도 할까 ㅅㅂ
-
자살 마렵네 0
여간 일도 아니지만
-
흠
-
옛날에 오르비에서 강의 하셨는데 지금은 어디서 강의하시는지 아시나요..
-
어릴때부터 꿈이었던 교대 입학하고 실습 가보니 적성에도 맞는 것 같고, 입결이야...
-
평가원보다 어려운데 정상인가요? 어려운3점부터 막히거나 못푸는데 정상인가요?...
-
이제 수능이 D-2밖에 남지 않았습니다. 이에 수능을 많이 경험한 저의 수능날...
-
아존나춥다 0
어차피 못잘거 공부라도 하려고 안들어갓는데 걍 통금풀리는시간만기다리는사람됨
-
컴팩트한 기출 1
1월 전까지 수1 기출을 한바퀴 돌리려 하는데 컴팩트한 인강강사 기출 뭐가있나요..?
-
작년말고 28번은 할만함? 26,27,29,30번은 4등급기준 어느정도임
-
아님 안 붙이고 수험표 뒤에 벅벅 써도되는건가요? 수험표 뒤에 쓰는 것도 검사받아요?
-
오늘 2시간만 자고 내일부터 10시에 자는 거 어케 생각함?
-
화이트헤드 나올지는 모르겠는데 나오면 헤겔 시즌2가 될만한 잠재성이 있어서 좀 무섭네요..
-
내년 상반기에 헌급방 지정 박고 입대할거같은데 군수 할만 하나요? 그리고 군수한다면...
-
11 12 1
주차장에서 담배 피는데 뒤에서 어느 집의 아버지와 꼬맹이 딸 둘이 얘기하며 오는...
-
채택완
-
04들아 올해 가자
-
뭔가 까마득한 느낌임. 내 학창시절을 지배했던 15개정교육과정도 이제 정말 끝물이구나.
-
첨에 강민철 독서 문학 둘 다 들었는데 독서는 잘 모르겠고 문학은 되게 유용했어요!...
-
어떻게 해야 잘할까요.. 함수~순열조합이 시험범위인데 함수는 걱정없는데 순열조합은...
-
https://youtu.be/RYHOoAZSVUM 영어 듣기 인트로 브금......
-
긴장되겠다 2
람쥐
-
장수생은 대학 가면 동아리나 미팅도 못한다는 이야기가 있던데 20
이거 진짠가요
-
전개 잘 되다가 결말이 좀 이상한데 잘못 읽은줄 ㄷㄷ
-
오야스미 2
캬루!
-
어삼쉬사나 준킬러 같은거
-
자꾸 저한테 생명과학 찍특을 판매해달라는 글이 많은데요, 최소한 올해는 찍특을...
-
사만다 시즌3랑 파이널 44~47 적중예감 42~45 떳는데 수능 때 2는 뜰 수 잇겟죠?………ㅠ
-
낼모레 수능인데 한파는 커녕 낮에는 걸으면 땀나더라… 라떼는 수능날 패딩입고 입구...
-
포부 적고가라 못 할 거 뭐 있 냐
-
개념도 좀 잘 훑어주는 그런 ..
-
개씨발
-
수능 끝나면 막상 수능 끝난 것이 실감이 안 나고, 막상 놀려고 하면 뭐 하고...
-
걍 치러가야지 마지막까지 힘냅시다
-
로맨틱코미디론 8
정통 로맨스 말고 로맨틱코미디는 단행본 기준 10-15화 내외로 끝내야 한다 그래야...
전 멍청한가 보네요. 글 열심히 쓰신 것같은데
하나도 이해를 못하겠음
이해하기 어렵게 쓰여진 글이에요 ㅠㅠ 전제되는 내용들을 하나하나 다 설명하면 글이 너무 길어져서 ㅠㅠㅠ
보기가 두 명제를 반대관계로 제시하고 있다는 사실로부터 존재함축은 바로 추론됩니다. 각 명제의 참 여부와는 아무 상관이 없습니다.
보기는 반대관계에 놓인 명제에 대해서 모두 거짓일 수 있다고 말하고 있습니다. 학생이 존재하지 않는다면 주어부가 공집합이 되어 고전논리의 관점에서 두 명제는 나란히 거짓이 됩니다. 무엇이 추론된다는 것인지 모르겠습니다. 존재함축이란 전칭긍정이든 특칭긍정이든 전칭부정이든 특칭부정이든 아무튼간에 무엇인가가 참이 될 때 존재가 함축되는 것입니다.
학생이 존재하지 않는다면 보기에서 반대관계에 놓인 두 명제가 모두 참이 됩니다. 전건이 거짓이기 때문입니다. 하지만 반대관계는 두 명제가 모두 참이 되는 것을 허용하지 않습니다.
그것은 고전논리학의 관점이 아닙니다. 부울 이전의 고전논리학은 주어부가 공집합일 경우 명제는 무조건 거짓이라 간주합니다. 정언명제가 참이 되기 위해서 주어부는 공집합이 아니어야 합니다. 유니콘은 동물이다 - 따위의 명제는 고전논리학의 관점에서 거짓입니다.
모든 유니콘은 동물이다와 어떤 유니콘은 동물이다는 반대관계에 놓여있습니다. 그러나 두 명제는 모두 거짓입니다 (고전논리학의 관점에서). 말씀하신 것은 고전논리학에 들어맞는 이야기가 아닙니다. 고전논리학과 현대논리학의 가장 큰 차이는 주어부가 공집합일 떄 명제를 어떻게 처리할 것이냐에 있습니다. 부울을 기점으로 관점이 갈립니다.
보기의 두 명제를 각각 P, Q라고 하겠습니다. 두 명제가 반대관계에 있으므로 가능한 경우의 수는 다음 세 가지입니다.
1. P가 참이고 Q가 거짓(존재함축을 전제)
2. P가 거짓이고 Q가 참(존재함축을 전제)
3. P와 Q가 모두 거짓
문제가 되는 것은 3입니다. 3은 말씀하신 것처럼 학생이 없는 가능세계를 전제합니다. 전통논리학에서는 해당 명제들이 참이라는 것이 존재함축을 전제하지 해당 명제들이 반대관계에 있다는 것만으로는 존재함축을 전제하지 않습니다. 반대관계에 있는 두 명제가 동시에 참만 아니면 되기 때문입니다. 그런데 3에서 학생들이 없는 가능세계를 전제하면 전통논리학에서 P와 Q는 모두 거짓이고 이 경우 반대관계의 성립과 아무런 모순을 일으키지 않습니다. 따라서 보기는 반드시 존재함축을 한다고 볼 수 없습니다.
보기가 존재함축을 하지 않는다면 선지 3번 역시 존재함축을 한다고 볼 수 없고 그렇다면 전통/현대논리학의 관점과는 상관없이 선지 3번의 두 명제가 모두 거짓인 경우가 존재합니다.
제가 이해한 바로는 이런 결론을 도출하신 것이 맞나요?
거추장스러운거 필요 없이 무조건 아님~
기념품좌가 팩트폭행 들어가신다~!
의견 감사합니다. 다만 1은 허수아비 공격의 오류입니다. 제가 1을 전제하지 않았기 때문입니다. 굳이 고전논리학을 따질 필요도 없이, 그러한 논의는 ③의 '어느 세계에서든'을 만족하지 못하기 때문에 의미가 없습니다.
2도 마찬가지입니다. " P와 ~P 모두에서 학생이 존재한다는 사실을 전제하는 일은, 그것들이 둘 다 거짓이 될 수 없다는 지문 내용을 무시하는 일입니다."라고 하셨는데, 학생의 존재를 전제하지 않았습니다.
그리고 이러한 반론은 배중률과 모순관계를 헷갈리시는 데 기인한 것 아닌가 싶습니다. 모순관계인 진술 중 하나는 참이라는 것이 배중률이지, 제시된 문장이 모순관계여야 한다는 식의 서술이 없습니다.
마지막 문단에 대해서는 제가 아래 링크 예상되는 반론2에서 충분히 설명했다고 생각합니다.
http://dotheg.com/221400173453
모순관계인 진술 중 하나는 참이라는 것이 배중률이지, 제시된 문장이 모순관계여야 한다는 식의 서술이 없습니다 -
그런데 기술자님께서 3번 선지가 맞다고 논증하신 과정을 살펴보면, "모든 학생은 연필을 쓴다" 와 "어떤 학생은 연필을 쓰지 않는다" 의 두 문장 가운데 하나는 배중률에 의해 참이 되며 제 3의 가능성은 없다는 이야기로부터 논의를 시작하고 있습니다. 배중률에 의해서 두 문장 가운데 하나가 참이 되려면 두 문장은 P ~P관계여야 합니다. 저는 3번선지의 두 문장이 모순관계가 아니라는 이유로 기술자님의 주장을 반론하는 것이 아닙니다. 기술자님께서 모순관계로 세팅해놓은 두 문장이 모순관계가 아니라는 이유로 반론하고 있는 것입니다.
3번 선지의 '어느 세계에서든' 에서 임의의 세계는 학생이 없는 세계도 포함해야 합니다. P U ~P = U가 되지 않는다면 P와 ~P가 모두 거짓이 되는 가능세계가 존재하게 됩니다. 그것은 모든 가능세계에서 P ~P중 하나는 참이어야 한다는 지문의 주장에 반합니다. 학생이 없는 세계는 얼마든지 가능하며, 포괄성에 의해서 그와 같은 가능세계는 존재합니다.
학생이 없는 가능세계에서 라면 모든 학생은 연필을 쓴다와 어떤 학생도 연필을 쓰지 않는다가 모두 참이 되죠. 학생이 없는 가능세계를 상정하는 것은 보기와 정면으로 충돌합니다.
학생이 없는 가능세계에서는 모두 거짓이 됩니다. 부울 이전의 고전논리학에서는 주어부가 공집합이면 명제는 경우불문하거 거짓이라 이야기합니다. 이에 대해서는 본문에서도 이 글의 댓글에도 누차 되풀이하여 이야기하였으니 참고 부탁드립니다.
그렇다면 학생이 0명인 가능세계에서는 모든 학생은 연필을 쓴다 어떤 학생은 연필을 쓰지 않는다 모두 거짓입니다. 이는 고전 논리학의 논리법칙중 하나인 배중률에 어긋납니다.
그러니깐 제 글의 요지가 P : 모든 학생은 연필을 쓴다 의 ~P가 어떤 학생은 연필을 쓰지 않는다가 아니라는 것입니다. 죄송한데 제 글을 다시 읽어주시길 바랍니다. 지적하시는 내용들이 전부 본문에 있는 내용이라서, 그것도 가장 핵심적인 비중으로 상세하게 언술되어 있는 내용이라서 그렇습니다.
순환논리입니다
글을 읽어주시기 바랍니다. 정말 죄송하지만 글을 읽지 않고 댓글을 다시면 뭐라고 말씀드리기가 곤란합니다.
지금 p ~p 가 모순관계가 아닌 이유로 주어가 공집합인 경우의 반례를 들 수 있어서라 하셨는데 그것을 배중률로 반박하니 또 p ~p 가 모순관계가 아니라 반박하시면 순환논리입니다
작성자님의 반론은 크게 2가지입니다.
첫 째, 학생이 존재하지 않으면 '보기'의 명제가 모두 참이 된다는 것. 그러나 '보기'의 명제는 모두 거짓이 됩니다. 이것은 이해황님도 동의하는 부분이며 그냥 그 자체로 팩트입니다.
둘 째, 학생이 0명인 가능세계에서는 모든 학생은 연필을 쓴다 어떤 학생은 연필을 쓰지 않는다 모두 거짓이다 - 이것은 사실 반론이 아니라 저를 도와주시는 겁니다. 제 글을 읽어보셨다면 아시겠지만, 상기 사실은 제 글에서 가장 주요한 근거로 활용되고 있기 때문입니다. P ~P는 배중률을 만족해야 합니다. 그런데 작성자님처럼 ~P를 설정하면 배중률을 만족하지 않습니다. 따라서 ~P를 배중률을 만족하도록 제대로 설정해야 합니다. 그런데 계속 저한테 배중률을 만족하지 않는데요? 하시면 저는 제말이요 제가 그럤잖아요를 반복할 수 밖에 없습니다.
P : ∀x(Px->Qx) & ∃x(Px) 라면,
~P : ~∀x(Px->Qx) ∨~ ∃x(Px)
여야 한다는 이야기입니다.
(P는 제가 특칭긍정으로 했습니다만 무엇으로 하든 이야기의 맥락은 같습니다)
같은 내용으로는 더 이상 말씀드리지 않겠습니다.