숨마쿰라우데 개정수1 케일리해밀턴정리
게시글 주소: https://d.orbi.kr/0002671086
숨쿰수1 44p에 케일리해밀턴정리의 역을 이용할때 설명이 나와있는데요
단위행렬의 실수배가 아닐때만 쓸수있다고 나와있는데 증명과정이 잘 이해가 안가네요
결과만 외우긴 좀 그런것 같고.. 구체적으로 ㄱ식이 임의의행렬A와 무슨 관계인지 잘 모르겠네요..
그리고 ㄱ식과 ㄴ식을 빼는건 두 식을 만족하는 공통의 A를 구하려고 하는건가요?
글로 보고 답변하시는 분들에게는 죄송합니다 제가 능력이 없어서 증명과정을 못올리겠네요ㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수시 탈락자들을 위한 패자부활전 전형
-
알바가 별로 없는것 같기도..
-
뀨뀨 6
뀨우
-
시켜버림..... 여기 매장에서 먹는게 찐인데 배달은 첨시켜보네
-
꼬리 유추 가능
-
하면 서울대 문과 기준 유리할까요 불리할까요 경제 사문 대비
-
이번엔 尹지지율 46%, 질문방식 바꿔도 지지율 40%대 6
[파이낸셜뉴스] 윤석열 대통령 지지율이 46%를 기록했다는 지지율 조사 결과가...
-
통산 내신 총 평균등급:1.15 내신 상세 1학년 선택과목X 1-1학기 국어 2,...
-
중3때 웩슬러에선 언어이해 118 시공간 132 처리속도 134 나머지 뭐 유동추론...
-
케플러 포함 7종류의 과학탐구 그림을 만들어 보았습니다. 그림에서 "평가원스러움"이...
-
선거보다 어려운내용 없죠? 공부하다가 진짜 헌법재판소보다 몇배는 난해해서 고생 좀...
-
수능 만점 기준
-
얼마전 전역하고 다시 시험준비하려는데 작년까지 대성에 계신거 확인했는데 증발하셨네?...
-
수능날 0
다시 국어 망칠까봐 두렵다..
-
쪽지부탁드립니다
-
문의는 인스타 디엠으로;;;;;;;
-
선생님에게 물어볼 수 있는거?
-
연경제 0
연경제 688도 가능한가요?
-
15시발점 교재랑 워크북있긴함요
-
기분 개같네
-
아침은 2
순대국밥
-
KBS, 尹 대통령 탄핵 찬반 집회 잘못 보도 사과…“관련자 엄정 조처” 2
KBS가 지난 11일 오후 1TV 5시 뉴스에서 윤석열 대통령 탄핵 찬반 집회...
-
서귀포 1989 거제 1930 부산 1576 연표외우듯 외워야하는거임? 설마.. 이...
-
지능이딸려서안되더라 연고라인이 한계인듯
-
재수 1년 지원해주신다 하면 할거임?
-
교과우수라서 내신입력하라는데...
-
오늘은 새르비 안했는데
-
신소재공학과 0
신소재공학과를 들어갈 거 같은데 정보가 좀 없더라구요. 대학 입학하기 전에 뭔가...
-
언매 확통 경제 사문 한문 선택할 것 같슴다!! 확통 하면 서울대 경제 가기...
-
379 미만이네요 이럼 cc빔 엄청셀듯
-
궁금
-
어디라인임? 지거국은 가나?
-
공군에서 군수 시도한 사람 중 95% 이상이 실패하고 2명만 성공했다는 글을...
-
그게 나야 바 둠바 두비두밥~ ^^
-
기하 과외가 아무도 없구만
-
중앙대 합격생을 위한 노크선배 꿀팁 [중앙대25][새내기 시간표, 과목 관련 FAQ] 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
껍질까고 7
먹기
-
명문대는 밥약 9
미슐랭 식당에서 하나여 동생이 신입생 옾챗방에서 선배들이 막 그랬다구 하던데.
-
관리형 독서실은 0
그냥 집 근처 아무곳이나 가면 되겠죠? 리뷰는 괜찮은거 같더라구요
-
ㅠㅠ
-
이재명 "카톡이 가짜뉴스 성역인가…반드시 퇴치할 것" 3
이재명 더불어민주당 대표가 13일 "카톡이 가짜뉴스 성역인가"라며 '카톡 검열'...
-
똥을 먹어야 설사를 먹게해준다는거 같음
-
한국에서 내세울수 있는 가장 강력한 스펙임 비단 취업뿐만아니라..
-
3칸이었는데 예비120언저리 잡히는거 보면 2칸도 붙을법하겠는데
-
이미 최상위권이라 변동성 적은경우 제외하고요
-
지구과학 안 한지 1년이 넘었다보니까 이제 문제 자체는 기억이 어렴풋이 나는데...
-
ㅇㅂㄱ 8
-
꿈이 가득한 옆동네 보다보면 느낌
케일리헤밀턴정리 증명이
성분연산으로 증명하지않나요?ㅠㅜ
답변 감사요 근데 저는 케일리해밀턴정리의 역이 성립하는 경우에 대한 내용을 물어본거라;; 님은 케일리해밀턴정리의 증명말씀하신거죠?
깊이, 그리고 일반적으로 이해하시려면 선형대수의 이론을 알아야 합니다. 하지만 2차 정사각행렬의 경우에는 좀 더 쉽게 설명이 가능하지요.
2차 정사각행렬에서, 케일리-헤밀턴 정리(이하 C-H)는 주어진 행렬 A = {{a, b}, {c, d}} 로부터 그 행렬이 만족해야 하는 특수한 형태의 방정식을 알려줍니다. 구체적으로,
A² - pA + qE = O
이 p = a+d 와 q = ad-bc 에 대해 성립함을 알려줍니다. 따라서 이 방정식은 원래 행렬에 대한 정보를 어느 정도 담고 있지요.
그러면 여기서 이런 질문을 할 수 있습니다. 만약 2차 정사각행렬 A가 어떤 방정식
A² - pA + qE = O …… (1)
를 만족함을 안다면, 이 방정식은 원래 행렬에 대하여 우리에게 얼마나 많은 것을 알려줄까요? 구체적으로, 우리는 (1)이 성립한다는 사실로부터 우리는 (p, q) = (a+d, ad-bc)라고 단정할 수 있을지 궁금해하는 것입니다.
이를 알아보기 위하여, 행렬 A를 하나 고정해두고, 경우를 나누어 생각해봅시다.
[경우 1] 우선 (1)을 만족시키는 (p, q)의 순서쌍이 유일하다고 가정합시다. 그런데 C-H 정리로부터, 우리는 (p, q) = (a+d, ad-bc) 가 (1)을 만족함을 알고 있습니다. 따라서 이 경우, (1)은 원래부터 C-H로부터 얻어진 이차식을 나타냅니다.
[경우 2] 이제 (1)을 만족시키는 (p, q)의 순서쌍이 유일하지 않다고 가정하고, 가능한 서로 다른 두 순서쌍을 (p1, q1) ≠ (p2, q2) 로 둡시다. 그러면
A² - p1A + q1E = O
A² - p2A + q2E = O
이고 두 식을 빼면 (p2-p1)A = (q2-q1)E 가 성립합니다. 따라서 약간의 논리를 거치면 A가 단위행렬의 상수배가 되어야 함을 얻습니다. 이것이 의미하는 바는, (1)이 원래 행렬에 대한 정보를 C-H보다 적게 갖고 있는 경우는 오직 A가 단위행렬의 상수배인 경우일 뿐이라는 것입니다.
반대로, A가 단위행렬의 상수배이면 (1)을 만족시키는 (p, q)의 순서쌍은 무수히 많습니다.
이로부터, 우리는 (1)꼴의 방정식에서 원래 행렬에 대한 정보, 특히 구체적으로 a+d 와 ad-bc의 값을 알아낼 수 있을 충분조건은 A가 단위행렬의 상수배가 아니라는 것을 압니다.
이것이 소위 'C-H의 역은 단위행렬의 상수배가 아닌 경우에만 쓸 수 있다'라고 하는 이야기인 것입니다.
깔끔한 답변 고맙습니다 원래 행렬에 대한 정보를 담고 있는 식으로 이해하니까 좋네요