수학미분가능관련질문이요
게시글 주소: https://d.orbi.kr/0003837781
안녕하세요
공부하다가 혼란스러운게생겨서 질문드려요ㅠ
함수가 미분가능하다! 라고 하면 함수의 좌미분계수와 우미분계수가 같다인가요아니면 함수값도같다고 해야하나요?
좌미분계수와 우미분계수만같으면 미분가능하다고할수있나요?
미분가능하면 연속이라고 배웠는데... 먼가 계속헤깔려요ㅠ
답변주시면 감사하겠습니다ㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
첫 날 계획은 무계획이라 큰일이에요
-
왜 자꾸 난독증같지 글 여러번 읽어야 겨우 이해하는데....... 국어 때문에 죽고싶9나......
-
여캐일러 투척 3
음 역시 귀엽군
-
믓찌노
-
25학년도 6/9/수능 "독서 0틀"
-
개꿀이노 ㅋㅋ
-
이거왜이러는거냐
-
좋은 아침이어요 9
다행히 수술이 필요할정도는 아니라고 하시네요
-
윤석열 4
지지자들은 뇌가 없나 지둔 늘려줘서 빠는건가
-
임정환t 1
Limit 끝나고 개념 복습하고 바로 검더텅 들어가나요 아님 Impact까지 하고 들어가나요?
-
다 저장하고 계획짤때 봐야지
-
언제부터 받나요??
-
작년보다 4점이 오르냐 ㅋㅋ
-
파 마늘 파마 늘
-
여캐일러 투척 5
화2 정복 8일차 세이아 실장 기념
-
언미영화생 100 98 1 79 81 이러면 대치 시대 반배정 어떻게 되나요?
-
23일이나 24일이려나 그것도 아니면 이 지겨운 시간 어떻게 보냄 공통된 의견이...
-
알림이 900개냐;;
-
본인 언매 개빡치는 점 10
24학년도 6/9/수능 25학년도 6/9 전부 국어 선택과목을 틀린 적이 없음....
-
ㅇㅂㄱ 0
얼리버드기상
-
얼부기 1
공부고고혓
-
ㅈㄱㄴ 고2모고 기준으론 2-3인데 수능은 풀어보니까 시간 안에 화작하고 독서밖에...
-
누가 뭐래도 푸앙이는 귀엽습니다
-
백분위 화작 90 미적분 90 영어2 사탐 90
-
시대 재종 0
지금 현재 강대 스투 시즌제로 다니고 있고 2월부터 시대인재 재종을 가고...
-
연대씨 조발하세용
-
ㅈㄱㄴ
-
본인 급똥때문에 5
지하철에서 후다닥 내리고 급똥 해결햇는제 시바 재수학원 지각임
-
원화는 쓰레기야
-
불다꺼져있으니까 무섭누
-
독서실근처에 자주보이는데 너무귀엽다
-
중3되서 나중에 현우진T 인강 커리큘럼 따라갈려고 함 문제가있음. 고1 부분, 즉...
-
새내기 필독! 학점관리/대외활동에 유용한 사이트 추천 0
대학커뮤니티 노크에서 선발한 중앙대 선배가 오르비에 있는 예비 중앙대학생, 중앙대...
-
얼버기 4
다시 잘거임
-
5->2 갔던 입장으로써는 "의심하지않고 하란대로 해라. 5등급이면 아무것도...
-
본인 원래 12시간자도 졸려서 못일어났는데 어제 1시반에 잤다가 어쩌다보니...
-
어둡구만
-
이아침에 신체검사 받으러가요
-
그냥들어도될까요 아니면 듣기전에 할게있나요
-
오늘도 파이팅
-
첨하는데 이거 어떤 식으로 공부해야되져?
-
서강대야
-
삼수까지한 옯붕씨의 성적은 기껏해야 2등급, 꽤 높은 확률로 의대 진학이 힘들어...
-
데려가고 싶은데 너무 큰 욕심인것인가 ㅜㅜ
-
ㅇㅂㄱ 4
연속이면서 동시에 좌미분계수와 우미분계수가 같아야되요
우선 답변 정말 감사합니다^^
근데요 어떤함수가 미분가능하다라고하면...
좌우미분계수=함숫값 이건아니죠?
제가 물어보고 싶었던건이건데 정작 이걸질문못했네요ㅠㅠ
둘다요 ㅎㅎ
연속이면 함숫값이 같아요
답변 정말 감사합니다^^
근데요 어떤함수가 미분가능하다라고하면...
좌우미분계수=함숫값 이건아니죠?
제가 물어보고 싶었던건이건데 정작 이걸질문못했네요ㅠㅠ
네 아니에요
3x가 x=2 에서 미분가능하잖아요?
함숫값은 6이고 미분계수는 3이죠
이거처럼 다를수도이지만
x=1 에서 함숫값3 미분계수3 처럼
같을수도있어요
감사합니다^^
연속이라는 커다란 벤다이어그램안에 조그만한 미분가능 이라는 벤다이어그램이 존재합니다
일단 답변감사합니다^^
그건알고있어요ㅎ
좌미분계수와 우미분계수가 같으면 됩니다. 연속임은 굳이 확인할 필요가 없습니다.
(좌미분계수와 우미분계수가 같다면 연속이라는 전제가 깔려있기 때문입니다)
허졉한 질문에 답변감사드립니다^^
포카침님 수비에대해 쪽지드렸어요..
함수가 미분이가능하다는걸 가장 매끄러운 곡선이구나 하는 느낌을가지세요 일단
극한값이 존재한다는것은
좌극한과 우극한이같다는겁니다
그림으로말씀드리면
---------o------------
o부분이 함수값이라고하면
함숫값은존재하지않아요
연속이라면 당연히 극한값은 존재하지만
극한이존재한다고해서 연속이 될수도있고 아닐수도있다는거에요
o이라는점에서 좌측으로 아주미세하게 이동한 좌극한과
우측으로 미세하게 이동한 우극한은 같아요 o-0 = o+0
연속은
이제 a-0 = a = a+0
----------•-------------
이런느낌이구요
연속은 쉽죠??
그냥 곡선이 매끄럽던지 날카롭던지에 상관없이 보기에 연결이되잇으면연속인거구요
좌극한값과 우극한값이같을뿐만아니라 함숫값도같아요
그리고 미분계수가 존재한다 라는건
좌미분계수와 우미분계수가같다는건데요
미분계수라하면 특정한점에서의 접선의기울기를의미하는데요
\ /
\. /
\. /
\. /
•
이그림에서보시면
•이라는점의 좌미분계수
와 우미분계수는 확실히틀리죠?
이해가안가신다면 연필로 그려보셔요 ㅎ
극한존재<연속<미분가능
이런식으로 되네요..
그림못그려죄송해요