[박수칠] 적분 기호 ∫의 이해
게시글 주소: https://d.orbi.kr/0004517989
미통기 ‘다항함수의 적분법’과 적통 ‘적분법’으로 들어가면 ∫(integral)을 배웁니다.
이미 알고들 있다시피 부정적분과 정적분의 표현에 사용되는 기호이고,
합을 의미하는 Sum의 머릿글자 S를 변형한 것이죠.
∫>
부정적분의 ∫은 도함수의 기호 d/dx와 정반대의 의미를 갖습니다.
dx와 짝을 이뤄서 ∫ dx의 형태로 사용되구요.
함수 F(x)의 도함수가 f(x)이면
라고 쓰며, 이때 f(x)의 임의의 부정적분이 F(x)+C이므로
와 같이 씁니다.
보다시피 부정적분에서 ∫은 합이라는 본래의 뜻과 무관하게 쓰였습니다.
합이라는 의미를 갖는 것은 정적분에서죠.
∫>
정적분의 정의는 함수의 그래프와 x축 사이의 넓이를 구하는 것에서 출발합니다.
함수 y=f(x)가 닫힌 구간 [a, b]에서 연속이고, 이 구간에서 f(x)≥0일 때
함수의 그래프와 x축, x=a, x=b로 둘러싸인 도형의 넓이 S는 다음과 같이
구할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분한 다음, 양 끝점과 각 분점의 x좌표를 왼쪽에서부터
차례로 x0(=a), x1, x2, …, xn(=b)이라고 합니다. 다음으로 각 분점을 지나면서 x축에
수직인 직선들로 도형을 자르고 이웃한 두 수선 가운데 오른쪽 수선을 높이로 하는 직사각형을
만듭니다.
(2) 이때 왼쪽에서 k번째 직사각형의 넓이와 모든 직사각형의 넓이 합은 다음과 같이
표현됩니다.
(3) 여기서 n→∞이면 구간 [a, b]에 존재하는 분점이 무수히 많아지기 때문에
각 분점의 x좌표들은 연속적으로 변하는 실수가 된다고 할 수 있습니다.
따라서 각 분점의 x좌표의 일반항 xk는 이 구간에 속하는 임의의 실수 x로 바꿀 수 있죠.
또한 직사각형의 가로 길이 는 0에 한없이 가까워지기 때문에 도함수의 기호와 같이
dx로 바뀝니다. 이때, 각 직사각형의 넓이는 다음과 같이 표현됩니다.
(4) (2)에서는 직사각형의 넓이가 k에 대한 식으로 표현되기 때문에 직사각형들의
넓이 합을 Σ로 표현할 수 있지만, (3)에서는 k가 없어졌기 때문에 Σ로 이들을
더하는 것은 불가능합니다.
따라서 직사각형의 넓이를 더하기 위해 새로운 기호가 필요한데 그것이 바로 ∫입니다.
x좌표가 x인 곳에 생긴 직사각형의 넓이 f(x)dx를 x=a일 때부터 x=b일 때까지 더하는
것은 다음과 같이 표현할 수 있습니다.
이처럼 Σ는 불연속적으로 변하는 직사각형의 넓이 의 합,
∫은 연속적으로 변하는 직사각형의 넓이 f(x)dx의 합을 표현합니다.
(부정적분에 ∫이 쓰인 이유는 정적분의 기본 정리에 따라 정적분의 계산에
부정적분이 필요하기 때문입니다.)
이렇게 이해하면 좌표축과 도형 사이의 넓이, 또는 도형의 부피를
정적분으로 간단하게 표현할 수 있죠.
<두 곡선 사이의 넓이>
두 함수 y=f(x), y=g(x)가 닫힌 구간 [a, b]에서 연속이고, f(x)≥g(x)일 때
두 함수의 그래프와 x축, x=a, x=b로 둘러싸인 도형의 넓이 S는 다음과 같이
구할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분하고,
각각의 분점에서 x축에 수직인 방향으로 수선을 그어서 도형을 자릅니다.
그리고 왼쪽에서 k번째 구간 [xk-1, xk]에 직사각형을 그리구요.
이 직사각형의 가로 길이는 , 세로 길이는 f(xk)-g(xk)입니다.
(2) n→∞이면 (1)에서 만든 직사각형의 가로 길이 는 한없이 0에 가까워지면서
dx가 됩니다. 또한 구간의 오른쪽 끝 xk를 x로 바꾸면 직사각형의 높이는
f(x)-g(x)가 됩니다.
(3) 따라서 도형의 넓이 S는 다음과 같이 계산됩니다.
<단면적을 아는 입체도형의 부피>
아래 그림과 같이 점 (x, 0, 0)에서 x축에 수직인 평면으로 잘랐을 때,
단면적이 S(x)인 입체도형이 있다면, 그 부피 V는 다음과 같이 계산할 수 있습니다.
(1) x축 위의 구간 [a, b]를 n등분하고,
각각의 분점에서 x축에 수직인 평면으로 도형을 자릅니다.
그리고 왼쪽에서 k번째 구간 [xk-1, xk]에서 평면 x=xk로 잘린 단면을 밑면으로 하는
기둥을 그리구요. 이 기둥의 높이는 , 단면적은 S(xk)입니다.
(2) n→∞이면 (1)에서 만든 기둥의 높이 는 한없이 0에 가까워지면서
dx가 됩니다. 또한 구간의 오른쪽 끝 xk를 x로 바꾸면 단면적은 S(x)가 됩니다.
(3) 따라서 도형의 부피 V는 다음과 같이 계산됩니다.
그럼 예제 하나 풀어보죠.
2014학년도 수능 B형 13번 문제입니다.
(1) 먼저 부피를 구하려는 회전체를 그림으로 표현하면 다음과 같습니다.
직선 l과 쌍곡선 C의 방정식을 연립해서 풀면 교점의 좌표는 (0, 0), (3, 2)가 되구요.
(2) 회전체의 바깥면은 직선 l이 회전해서 만듭니다.
이 회전체의 부피는 다음과 같이 구할 수 있죠.
(3) 회전체의 안쪽면은 쌍곡선 C가 회전해서 만들고,
부피는 다음과 같습니다.
(4) 따라서 구하는 회전체의 부피는 (2)-(3)으로 구할 수 있죠.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
커로 모음 0
85 51 5 85 87
-
학력으로 외모를 커버하겠다
-
커로 성적 1
90 92 4 80 84 6평+9평
-
음마싯다
-
두각수학황 3
출격.
-
커하는 5
99 89 2 100 99
-
백분위 국어 97 수학 88 영어 2 물1 62 지2 71 악악악악악악
-
커로 성적표 1
67 59 4 88 73 한 시험지에서 다 나옴
-
솔랭에서 도란만 기다린다모 도란과 도란도란 협곡데이트 이런게 짝사랑하는...
-
해도 되는거 맞죠?
-
엉ㅇ엉 울고싶다 6
한 10시간 정도
-
알바생존성공 4
이제 인강커리 공부갑니다 같은 05년생한테 확통사탐런 추천하고 커리추천해주니까 느낌이상하네 ㅋㅋㅋ
-
ㅇㅈ 0
혼또니 오모시로이
-
06두기 성인되고 마시는 첫 술임 (근데 수능치고 일본,베트남 가서 마셔본 적 있긴 함)
-
국어 커하 (98, 100(이하 원점수-백분위 순)) 수학 커로 (76, 85)...
-
커로모음이라 3
81 80 5 87 74 참고로 뒤에 4개가 한 시험에서 떠버림
-
*백분위 85 58 (3) 82 80 100 85 (1) 100 100
-
자 생2 버리고 9
생2는 좀 아닌거 같고 사문이랑 같이 할 사탐과목 추천 받습니다.. 근데 사문 지1은 별론가?
-
하루종일 누워만 있으니 이젠 고양이가 막 밟고 다녀요 원래 사람 근처 잘 안 오는...
-
여붕인데 대학교 오티 전에 춤 몇개 배워두려고 댄스학원 무료체험을 가봄 다대일...
-
윈터스쿨 환불 0
저랑 너무 안맞고 몸이 상하는게 느껴져서 환불하려고 하는데 보통 학원에선 해주나요?...
-
麻婆豆腐 1
-
연전전 추합권이었는데, 지금 점공보니 등수가 엄청 밀려있네요ㅠ 40% 조금 넘게밖에...
-
25국어 생각하니까 시험지 찢어버리고 싶네
-
국어 61 수학 81 화1 59 생1 40 생2 96
-
7000원..! 이걸로 아이스크림 사먹어야지
-
아니 대체 왜 8
시대갤에서는 연고대 일반과 합격증 올려도 나오는 댓글이 의떨치떨한떨설떨약떨수떨인데...
-
국어 << 해도안오름 과탐 << 실수하면 등급 나락 영어 << 좆같이 재미없음 수학...
-
1.봉미선의 엉덩이로 깔아뭉개기 공격 2.신형만의 발냄새 양말 회전 공격...
-
친구집에서 6
칼바람하기
-
맞팔받습니다 8
-
군수생 달린다 5
고고고고고ㅗㄱㄱ
-
ㅠㅠ 내가 천재였다면..
-
저에게는 아무런 책임이 없음을 말씀드립니다
-
문과 지망입니당
-
1. 레버리지는.. 단기적 변동성에 너무 취약함 시발 그리고 양방향으로 얻어맞으면...
-
다들 기하 한 번 잡숴봐요
-
ㅋㅋㅋㅋㅋㅋㅁㅊ
-
근데 기하 너무 생긴게 좆같은데...
-
모든과 수학 1순위 거의 확실한가요?
-
공부 안했는데 ㄱㅊ음?그냥 앱 깔아서 모고 풀어봤는데 85점 91점...
-
들어오지마 제발
-
없겠죠...? 걍 다 실수들인 거겠죠...? ㅠㅠ
-
랭킹에 없구나 5
-
어떤가요? 예를들어서 여자가 나이 25세. 남자는 31세. 내 주위 여사친들은 다...
-
내 뒤로 사람이 차면서 예상 등수는 내려가는데 왜이럼?
-
더 문제라고 생각 보통 고려대 교과우수는 정량평가라 사람들이 딱히 뭐라하는 눈치는...
-
안녕하세요 1
안녕하세요
-
의미가 없는건가요? 점공률 약 25퍼인데 다 달라서 뭘 믿어야할지 모르겠네요.....
-
98 91 85 98 95 90 96 93 88 94 난 항상 정법 만표를 바라보고...
부정적분에 적분구간이 있을 수는 없어요 수정해주세요
본문에서 어느 곳을 얘기하시는 건가요?
거의 맨 윗부분 말씀하시는거 아니에요? 이미지로는 두번째쯤?..
이런 실수가 있는지 몰랐네요...
수정했구요, 두 분 모두 감사합니다.
ㅎㅎ 좋은글 감사드려요. 비록 전 문과지만ㅜㅜ 끝까지 이해해보려고 노력해봤네요. 감사합니다!^^
앞까지는 문이과 공통입니다. 어려운 부분 있으면 질문 주세요~ ^^
고맙습니다