미적 30번 푼 사람들 와바
게시글 주소: https://d.orbi.kr/00059103798
끝나고 푼거임
맞음?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이브 3
스텔라이브 ㅈㄱㄴ
게시글 주소: https://d.orbi.kr/00059103798
끝나고 푼거임
맞음?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
이브 3
스텔라이브 ㅈㄱㄴ
대충 ln갖고 치환 존나 때릴거 같은 문제,,,,
30번 끝나고 보니까 할만하네 다른거 버리고 이거풀걸
이제 지금까지의 두배 연산하시면댐...
연산은 계산기한테 시키고 싶다...
풀이 자체는 맞는거죠?
마자여
16이 답아님?
맞는데 전 시험시간땨 못풀어서 한번 풀이만 해본거에요
항 4개의 계수를 식 4개 이용해서 다 구해내면 되는 거 맞음??
간단하긴 한데 계산을 많이 해야하네;
사실 f의 세 정점이 y=x^2위에 있다는걸 활용해 인수 3개 정하고 시작하면... 여전히 계산 많음
1. (가) 조건이 험악하게 생겼지만 f'(x)/f(x)-1/x 이므로 적분식은 lnㅣf(x)ㅣ-lnㅣxㅣ=lnㅣf(x)/xㅣ로 식을 정리할 수 있고 f(3)=9f(1)임을 얻을 수 있다
2. (나) 조건에서 함수 g(x)는 미분가능하므로 극값을 가지면 g'(x)=0이다. 따라서 g'(1)=g'(3)=0에서 f(1)=f'(1)이고 f(3)=f'(3)
3. g(1)=0이므로 f(1)=1이고 따라서 f'(1)=1, f(3)=9=f'(3) 임을 알 수 있다
4. 사차함수에 대해 5가지 정보를 알기에 모든 계수를 결정할 수 있다. f(1)=f'(1)=1에서 f(x)=(x-1)^2*(ax^2+bx+c)+1로 식을 잡을 수 있고 f(0)=0, f(3)=9=f'(3)을 활용해 a=-1/4, b=7/4, c=-1임을 확인할 수 있다.
5. f'(2)=15/4이고 적분식을 [xf'(x)-f(x)]/x^2*g(x)로 바라보면 전자를 적분해 f(x)/x 후자를 미분해 g'(x)=f'(x)/f(x)로 바라볼 수 있고 식을 정리하면 f(3)g(3)/3-integrate f'(x)/x from 1 to 3을 얻을 수 있음. 계산하면 ...