칼럼11) 안 소소한 테크닉
게시글 주소: https://d.orbi.kr/00062385201
이번꺼는 소소하지 않습니다. 어렵거나 복잡해서 그런게 아니라, 중요한 관점이라서 말이죠. 매우 유용할겁니다 ㅎㅎ
수2와 미적분에서 둘 다 사용되는 개념입니다.
혹시 미적 선택자가 아니거나 아직 미적분 공부를 안 하셨는데 내용이 궁금하시다면 칼럼 맨 아래를 참고하시면 되겠습니다. 끝부분은 같은 내용을 수2 버전으로 다루고 있습니다.
알고 있는 얘기부터 시작해보겠습니다.
이럴 때에는 f(x)는 고정한 뒤에 상수함수 y=m을 움직여가면서 관찰합니다.
이럴 때에는 직선 y=mx에서 기울기를 빙글빙글 돌려가며 관찰해주구요,
이럴 때에는 이차함수를 파닥파닥거리면서 관찰하죠.
때에 따라 상황을 맘대로 바꿔버리기도 합니다.
풀진 않을건데, 아래 문제로 예시를 들어볼게요.
ebs 문제인데요 이 문제가 딱 그러하죠. a를 바꿔줘가면서 확인을 해줘야 하는데, 이걸
이렇게 써서 이차함수 그린 뒤에 삼차함수를 파닥거릴수도 있구요
이렇게 써서 오른쪽 함수 그린 뒤에 y=a를 위아래로 움직여줘도 되겠죠.
이렇게 할 사람이 있나 싶긴 합니다만 이것도 되긴 되죠 ㅋㅋㅋ
오른쪽 함수 그린 뒤에 a값을 바꿔가며 직선을 빙글빙글 돌려줘도 됩니다.
혹 풀어본 분들을 위해 답 말씀드리자면
이 나옵니다.
주목할 점은 이겁니다. 필요한 만큼을 곱해주거나, 나눠줘서 자신이 원하는 형태로 식을 바꿔주는거죠. 목적은 관찰하기 쉬운 형태로 바꾸거나, 계산을 쉽게 하는 것에 있습니다.
원하는 만큼을 곱해주거나 나눠준다는 것을 다음과 같이 활용할 수도 있습니다. case 2개를 보여드릴게요.
case 1.
이걸 계산하는 상황에서 저 왼쪽 놈을 미분하자니... 머리가 아프죠. 이때 이렇게 할 수 있습니다.
와! 계산이 아주 쉬워져요.그림으로 그려서 상황 관찰하기도 수월합니다. 그림 상황에서 이차함수를 더 낮춰서 딱 접하게 되는 상황이 원하는 상황이네요.
계산은 간단히 마무리됩니다.
이건 양변에 x를 곱해줘서 계산을 편하게 한 상황이죠. 또 다른 경우를 보겠습니다.
case 2.
그림처럼 직선과 곡선이 접하는 경우의 a값을 구하는 상황입니다.
계산량이 꽤 있어보입니다. 식을 변형해줍시다.
상황을 그림으로 그려보자면...
이건 머 암산도 되겠네요. a는 -1/e입니다.
두 번째 케이스에서는 양변에 x를 나눠주었습니다.
지금 본 두 케이스를 통합해보면 다음 결론이 나옵니다.
적당한 인수를 곱하거나 나눠서 상황을 단순화시킬 수 있다! 계산을 가볍게 해주거나, 관찰하기 쉽게 해준다.
맨 처음에 소개드린 것도 사실 같은 원리입니다. 한편, 주의점이 한 가지 있습니다. 다음 예시를 보시겠습니다.
0에서 접한다는 사실이 유지가 안 되어버리죠? 왜 이런 일이 발생한 것일까요. 앞선 사례에선 왜 이런 문제가 생기지 않았을까요?
생각보다 이유는 아주 단순합니다. 관찰하는 곳의 인수를 날려버려서 그래요. 0근처를 관찰하고 싶었던 상황에서 0근처에 조작을 가해버리면 당연히 식이 바뀌겠죠. 앞선 두 예시에서는 0을 관찰하고 있는게 아니었기 때문에 x를 곱하거나 나눠줘도 문제가 없었던 것입니다.
즉, 관찰하는 곳 외의 부분에 적당한 인수를 곱하거나 나눠서 상황을 단순화시킬 수 있다! 계산을 가볍게 해주거나, 관찰하기 쉽게 해준다.
라고 해야 완전해지겠네요.적당한 인수를 곱해준 곳 외의 부분은 접하거나 만난다는 성질이 유지됩니다. 예를 들어
여기서 x를 나눠줬잖아요? 0근처의 상황은 변했으나 그 외 접점인 1의 상황은 변하지 않습니다.
다항식의 버전을 보면 이 원리가 더 잘 와닿을 겁니다.
그려 보자면 이런 상황인거죠.관심있는 부분(접점)이 3이 아니므로 x-3를 날려버리겠습니다.
역시 그림으로 그려보자면
이렇게 그려지며, m=-4임이 보이네요. 또, 접점의 x좌표는 2인 것까지 바로 보입니다. 나머지 한 근이 -1인 것도 보이네요! 3근처에 조작을 가해줬으니 3외의 접점들은 모두 x좌표가 유지됩니다.
사실은 이 과정이 말이죠
위와 같이 식을 넘긴 뒤에 인수의 관점으로 해석한 거랑 똑같은 거에요. 이렇게 보니 원리는 매우 간단하다는 걸 알 수 있죠!
다양한 상황에서 유용하게 쓰이는, '소소하지 않은' 테크닉입니다. 전 다음에 또 좋은 칼럼과 자작문제로 찾아뵙겠습니다. 좋아요와 팔로우 부탁드려요. 감사합니다 ㅎㅎ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
2배속으로라도 강e분 들을까요? 혼자 정리하려 했는데 분량이 너무 많아서..
-
오늘도 파이팅. 몸관리 잘하자.
-
다들 차렷. 0
학원으로 갓! 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘 핫, 둘, 핫, 둘
-
얼리버드 기상. 3
-
조이는 보이가!
-
얼버기 2
D-8
-
킬캠 10점이 뭔데 씹덕아
-
이감 중요도 c 0
C에도 없는 작품은 안봐도 되겠지..?? 중요도에 아예없는작품 나온적 있나
-
clothing20snu 대성 커피 먹구가 ~~ ⸝⸝> ̫ <⸝⸝ 0
있잖아, 지금 2026 19패스 구매하고, 내 ID를 입력하면 너도, 나도 각각...
-
얼버기 3
D-8 화이팅!!!!
-
늦버잠 2
어차피 내일 오후 수업이라 괜차늠 ㅋㅋ
-
진짜 고능하네.....
-
시험지 꺼내거나 파본검사할 때 눈풀하면 부정행위인가요
-
현실적으로 1
화미생지 기준으로 96 96 2 89 89 면 어디 적정라인임? 이과기준으로
-
30만원 그대로 깨지겠네 제발 내일 학교에서 나의찾기 신호 떠라
-
탐이나요
-
1. 아잉은 무조건 중급이나 고급으로 들어라. 초급반에 간다는 것은 고려대생으로써의...
-
그 때가 재밌었는데.. 오랜만에 우연히 차영진t 해설강의 듣는데 다시 공부하고...
-
보통 그냥 감이죠?
-
ㅅㅂ ..
-
아 슈발 에어팟 2
잃어버렸네 ㅈ같다 진짜
-
크크루삥뽕
-
시간 ㅈㄴ빠르네
-
다 끝냈는데 혹시 짧게 끝낼수 있는 언매 문제지 있으면 추천해주시겠어요??
-
이상하게 취향은 아니네
-
...
-
이거 이기면 뭐 주나? 노벨상? 주제궁금하면물어보세
-
정답이2222ㄷㄷ
-
나도 질문 받아볼까 29
국어 원툴 24언매 표점 145 백분위 100
-
아직 반팔입어도 되겠군
-
살인마들은 그냥 유전적버그가 나버린 일종의 오류 생명체 이지 않을까 신기해..
-
ㅇㅇ… 그냥 길이만 긴 일개 고전시가 1인데 사실 문제를 어떻게 내냐에 달린 거지...
-
반 알로는 택도 없네 12
앞으로 잠 안 오면 한 알 그냥 먹어야지....
-
이 정도면 걍 겨울 아님? ㅋㅋㅋㅋㅋ
-
분석할 수 있는 역량은 나름 괜찮은 것 같은데 타임어택에 항상 약한 게 문제네..
-
바로 자야지
-
올해 진짜 왤케 뭔가 애매하지... 이거다 싶은게 진짜 하나도 없네요
-
옛날에 내가 대충 휘갈겨서 막 냈었는데 승인된 레어들 다시 보니까 반가우면서...
-
본인 가끔씩 잠 안오면 유튜브에 박승동 강의 틀어놓고 잘 때 있음. 학교선생님 그...
-
현우진 차영진 호훈도 인정한 Goat.
-
덕코 어케 버는 거더라
-
하긴 해야하니까...
-
191130 정도의 문제는 미적 30에 나올 수 있을까요? 9
그래도 어렵나
-
재수 수능 조지고 논술 다 광탈해서 삼수 확정났을때쯤 인기 많았던 노래라 한동안 이...
-
아무나
-
이거 5개 다틀리면 낮4부터 시작임
-
고3때는 분명 고대 바의공 성대 글바메만 가도 좋겠다 이랬는데 ㅠㅠ
-
웅웅
와 기원햄 수업내용이랑 똑같네
매번 이런 류(??)의 댓글이 달려서 이젠 올릴 때
이번 내용은 어떤 강사분이랑 비슷할까 생각하면서 올려오ㅛ ㅋㅋㅌ
ㄷㄷ
수미상관 ㄷㄷ
파닥파닥 귀엽다
복잡한 상황을 맞이할수록 '이걸 어떻게 조작해야 쉽게 볼 수 있을까?'를 생각해보는 것이 중요한 듯하네요
그쵸 상황을 단순화하는 것, 봐야할 것만 보는 것은 비단 수학 뿐 아니라 다른 모든 문제 해결과정에서 중요한 점 같아요
오...
혻 이런건 어떻게 아시는건지 여쭤봐도 되는지에대해 물어보는것에대해 호락을 받아도 되는지 질문해도 되겠습니까?
어떻게 아시는건지에 대해... 물어보는 것... 에 대해 허락을 받아도 되는지...를 질문해도 되겠
음...
네 될 거 같아요
이창무 선생님이 강조하신 관점이랑 똑같네요.
미지수 계수를 상수로 남기기 위해서 x를 나누는걸 함수 몰아넣기라고 부르면서 쓰고있어요 ㅋㅋㅋ
와좋다진짜좋다진짜다