[물리 칼럼] 전기력 유형 정성적으로 푸는 Skill - 전기력 방향을 이용한 추론
게시글 주소: https://d.orbi.kr/00064124777
전기력 유형은 다음 2가지 종류의 조건 중 일부를 제시하고 나머지를 추론하는 퍼즐입니다.
조건 ① 각 전하의 부호와 크기
조건 ② 각 전하가 받는 힘
①에서 ②를 구하는 것은 매우 쉽습니다. 쿨룽 법칙에 때려 넣고 계산하면 되죠. 아래의 예시를 봅시다.
[240610] 전하 A, B, C의 부호와 크기를 먼저 결정하고 전기력을 구하는 문제
문제는 ②에서 ①을 구하는 경우입니다. 아래의 예시를 봅시다.
[230620] 전하 P가 받는 힘을 제시하고, 전하 A, B의 부호와 크기를 물어보고 있음
[220919] (나) 상황에서 A, B, C에 작용하는 힘의 방향을 모두 알 수 있음
[230919] 마찬가지로 (나) 상황에서 A, B, C에 작용하는 힘의 방향을 모두 알 수 있음
위 문제들에서 전하 A, B, C의 부호와 크기를 케이스로 나누어 풀면 ①번 조건에 대해 하나하나 케이스 분류로 풀다가 나가떨어지고 “전기력 문제는 감으로 푸는 것”이라고 생각해버립니다.
그런데, ②번 힘 조건에서 ①번 전하 조건을 즉시 찾아내는 도구를 충분히 갖고 있으면 케이스를 거의 나누지 않고 대부분의 문제를 풀 수 있습니다.
-------------------전하가 2개인 경우-------------------
전하가 2개인 간단한 상황부터 보겠습니다. 두 전하가 서로 밀어내면 부호가 같고, 끌어당기면 부호가 반대입니다. 두 전하의 부호가 같을 때 (+,+) 또는 (-,-)이므로 편의 상 (a,a)로 표현합시다. 두 전하의 부호가 반대일 때는 (a,b)로 표현하겠습니다.
(여기서 a, b는 서로 다른 부호를 의미합니다. 세 전하의 부호가 모두 같으면 (a,a,a)로 표현합시다. 이렇게 표현하면 고려하는 경우의 수가 절반으로 줄어듭니다.)
-------------------전하가 3개인 경우-------------------
전하가 3개일 때는 먼저 힘의 총합이 항상 0임을 이용해야 합니다. 예를 들어, 세 전하 A, B, C에 작용하는 힘의 크기가 -2F, F, ?라면 C에 작용하는 힘이 F임을 알 수 있습니다. 이어서 전하 A, B, C의 부호에 대해 생각해봅시다.
이 때, 불가능한 경우를 배제하는 방향으로 생각해야 합니다. A의 부호를 a라고 두고 시작합시다.
[Tip 1] 양 끝의 전하가 바깥 방향으로 힘을 받으면 양 끝 전하의 부호가 같다.
증명1. 힘의 방향이 (←, ←, →) 또는 (←, →, →)인 경우를 생각해봅시다. A가 왼쪽으로 힘을 받으므로 (a,b,b)는 배제할 수 있습니다. 한편, C가 오른쪽으로 힘을 받으므로 (a,a,b)는 배제할 수 있습니다. 결국 (a,a,a) 또는 (a,b,a)가 가능합니다. 두 경우 모두 A와 C의 부호가 같습니다.
증명2. 양 끝의 전하가 서로 다른 부호라면 A와 C는 서로를 끌어당겨 안쪽으로 힘을 받습니다. A, C의 부호가 다르기 때문에 가운데 위치한 B는 A, C 중에서 적어도 하나는 안쪽으로 끌어당깁니다. 따라서 A, C가 받는 힘이 모두 바깥 방향일 수 없습니다.
다음 문제를 풀어봅시다.
[231119] (가)와 (나)를 비교해보면 D가 추가된 후 B에 작용하는 힘이 0이 되었으므로 (가)에서 B에 작용하는 힘은 왼쪽 방향입니다. 이제 (가)에서 A, B에 작용하는 힘의 방향이 같으므로 (←, ←, →)로 힘이 작용하고 Tip 1에 의해 A와 C는 같은 부호입니다. A, C가 (+,+)라면 C에 작용하는 힘의 크기는 (가)에서보다 (나)에서 더 크므로 A, C는 (-,-)입니다. (나)에서 A, C가 B에 작용하는 힘은 왼쪽 방향이므로 A의 크기가 더 큽니다. 결과적으로 A, C의 부호 조합 4가지 중 2가지만 고려해도 되기 때문에 훨씬 쉽게 풀립니다.
[Tip 2] 인접한 두 전하가 서로 끌어당기는 방향으로 힘을 받으면 두 전하의 부호가 다르다.
증명 1. 힘의 방향이 (→, ←, →) 또는 (→, ←, ←)인 경우를 생각해봅시다. A의 부호를 a라고 가정합니다. A가 오른쪽으로 힘을 받으므로 (a,a,a)는 배제합니다. B가 왼쪽으로 힘을 받으므로 (a,a,b)는 배제합니다. 남은 경우는 (a,b,a) 또는 (a,b,b)네요. 두 경우 모두 A, B의 부호가 다릅니다.
증명 2. 인접한 두 전하 A, B가 서로 같은 부호라면 A와 B는 서로를 밀어내는 방향으로 힘을 줍니다. 가장자리에 위치한 C는 A, B에 같은 방향으로 힘을 주기 때문에 A, B 중 적어도 하나는 상대방으로부터 밀려나는 방향으로 힘을 받습니다. 따라서 A, C는 다른 부호일 수 밖에 없습니다.
다음 문제를 풀어봅시다.
[230919] 먼저 (나)에서 B, C, A에 작용하는 힘의 방향은 (→, →, ←)이므로 Tip 2에 의하면 A는 (-)입니다. 이제 (가)에서 C가 +x 방향으로 힘을 받으려면 B는 (+)이어야 하네요. 선지 ㄴ은 대칭성을 이용하면 쉽게 풀리고 ㄷ은 ㄴ과 사실상 같은 선지입니다.
이제, 힘의 크기가 0인 전하가 존재하는 경우를 생각해봅시다.
[Tip 3] 힘의 크기가 0인 전하가 있으면 다른 두 전하의 부호와 대소 관계를 구할 수 있다.
i) B에 작용하는 힘이 0인 경우 A, C의 부호가 같고 B는 내분점에 위치합니다.
ii) C에 작용하는 힘이 0인 경우 A, B의 부호가 다르고 C는 외분점에 위치합니다.
iii) A, B, C에 작용하는 힘이 0인 경우 위의 i)~ii)를 동시에 만족하므로 부호는 (a,b,a)입니다.
결론
[Tip 1] 양 끝의 전하가 바깥 방향으로 힘을 받으면 양 끝 전하의 부호가 같다.
[Tip 2] 인접한 두 전하가 서로 끌어당기는 방향으로 힘을 받으면 두 전하의 부호가 다르다.
[Tip 3] 힘의 크기가 0인 전하가 있으면 다른 두 전하의 부호와 대소 관계를 구할 수 있다.
기회가 되면 대칭성과 변화량을 이용해 정량적으로 판단하는 방법도 써보겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그럼 고대 0
담주 화, 수 가능성 있음?
-
ㅇㅇ
-
냥컴 빵이네여 4
최초합컷 946.25 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ 워..
-
멋있어
-
뱃지가 없으니 2
내가 공부글을 써도 신뢰도가 좀 떨어질거같다…ㅠㅠ
-
어둠의 pdf단 집결.
-
휴릅 5
10시간
-
냥의멋잇다 5
수능날원점수만봤을땐될줄알았는데
-
영어 커리 0
작수 영어 90인데 운이 좋았던것 같아서 주간지 하나만 들고 가려고 하는데 빈칸...
-
뱃지 5개! 8
현역 때 이과 수시로 쓴 설교 뱃지 획득
-
설마 이거 돈 받아쳐먹는 주제에 하는 가게가 제한되어 있는거임?시발 개새끼들이네.
-
경희 점공 0
응용화학과 25명 뽑고 95명 지원 점공 24/48 추합은 작년에 9명 돌았어요...
-
n수라는 것 5
당시에 겪고 있다면 정말 ㅈ같은데, 나중와서 돌아보면 스투 다닐 때도 나름...
-
합격증 올라오는거 보니 +1의 욕구가 절로생기네
-
좀만 기다려보죠
-
무섭구나
-
둘다 공대 가정했을때요 무조건 전자라고 생각했는데 후자라는 의견도 좀 보이는거같아서...
-
4시엔 하자 0
나무 잘라서 직접 종이 만들어서 합격증 인쇄하고 집집마다 보낼 작정이냐 스카이라서...
-
이 십새끼 삼형제는 알고 읽어도 헷갈린다 미친 지문들
-
알려주실분????
-
뉴런 공부법 5
뉴런은 예습이 중요하다던데 어떻게 공부해야하나요?
-
연세대랑 고려대랑 이름만 바꾸면 압결이 어떻게 될까 6
다른건 전부 그대로인데 서로 이름만 바뀌는거임 그러면 연세대(현 고려대)가 선호도가 더 높아지려나
-
실검 2위에 약속의라고 있는데 궁금하네요
-
융전은 이름이 간지가 안남...
-
왜 그럴까 생각해보면 그냥 친구가 적어서 그럼 에휴이
-
레전드 얼버기 2
-
해야는 되고 하기는 너무 싫고 ㅈㄴ 무기력한데 어쩌지
-
의대 증원인가?
-
친구들이 중경외시에 우르르 몰려 있음
-
ㅈ됏네
-
오픈카의 딜레마 1
오픈카를 타서 어울리는건 젊은이인데 젊은이는 돈이 없고 나이가 먹으면 돈은 있는데...
-
2/7 등록금 고지서 출력 전까지는 뭐 안해도 되는거죠?? 다 검색했지만...
-
"최초합격자 중 정시 수능(수능전형) 사범대학, 간호학부 각 모집단위별 상위 20%...
-
하 시발 왜이러냐
-
그 때 매일 투데이글도 적었었는데...
-
피고나네 2
7시간 2분 13초만 자야지
-
오르비 일해라 0
뱃지좀 주세여…
-
오르비 대스타와 현목이라니
-
4칸스나지만 안될거같음
-
ebs 박봄쌤 올해 22개정 통사 강의 안하시나요? 0
이 쌤 인강 듣고픈데 오티도 없고 강의 목록에도 통사가 없어서요 근데 강의 계획서는...
-
님들아 6
나 심심해..
-
시평은 되는거 같구나...
-
저번 글 신고 먹었는데 먹을만해ㅛ나요????
-
외대 조발 2
기다리는 사람 나 말곤 업나 외대바라기 어디 없나..
-
친구들 20
연의 카의 울의 지거국의 2 지사의 3 나 : 아마 어딘가 의
-
sk세븐모바일 알뜰폰 쓰는데 해외나갈 때 별도 통화로밍안하고 그냥 출국함 업무상...
-
스카 고정석 끊어서 다니고 있는데 옆자리 앉은 아줌마가 존나 시끄러움 책 넘기고...
-
그야 수시니까.
-
왜 벌점 받았지 6
여자 파랑 관련 게시글 신고 먹고 30점 받았네 뭐지
로버트 오펜하이머의 수능 물리학 ㄷㄷ