삽질 많이 해보세요!
게시글 주소: https://d.orbi.kr/00064444606
쎈
rpm
개념 원리
바이블
올림포스
올림포스 고난도
고쟁이
일품
마플 교과서
마플 시너지
마플 수능기출총정리
정도는 수학(상), 수학(하), 수학1, 수학2, 본인 선택과목 모두 풀어보고 모르겠거나 틀린 문항 정리해보고 새로운 풀이 찾아보고 풀이 최적화 고민해보고 한 뒤에... 모의고사 1등급이 안 나올 때 '나는 수학(공부)에 재능이 없나보다'라고 말할 수 있다고 생각합니다.
수능 수학을 공부하시는 분들을 보며 드는 생각 중 몇 가지가 '굳이 저 강의 들을 필요 없는데', '굳이 저 자료 공부할 필요 없는데', '본인 실력에 맞지 않는 학습은 오히려 독이 되는데'입니다. 강의만 하루에 6시간씩 듣기보다, 어떤 자료가 좋을지 고민하는 데에 시간 흘려보내기보다 차라리 위에 언급한 내신 대비 용 문제집들이라 불리는 자료들 서점에서 사와서 홀로 풀어보고 피드백하는 것이 실력 향상과 그에 따른 성적 향상에 효과적이라고 느꼈습니다.
최소한 저 정도로 기초를 쌓아두고 이후에 뉴런이든 한완수든 n제든 실모든 공부해야 효과적이고도 효율적인 실력 향상을 경험할 수 있지 기초가 없는 상태에서 자꾸 뉴런 듣겠다, 한완수 읽겠다, n제 풀겠다 실모 풀겠다 해봤자 머리 좋은 1% 말고는 실력 향상에 그리 도움 되지 않는다고 생각합니다.
2019학년도 수능 가형 21번 문항입니다. (가) 조건에 주어진 항등식의 양변을 적분하여 (나) 조건과 적절한 x값들의 대입을 통해 적분상수를 결정하고 최종적으로 f(-1)의 값을 찾아내는 문제였습니다.
효율적인 풀이를 공부한다면 x=-1/8과 x=6에서의 함숫값이 (나) 조건에 주어졌고 f(x)와 f(2x+1)가 연관이 있다는 점에서 x=2x+1을 만족하는 x=-1을 대입해보자.. 정도의 사고의 흐름을 정리해볼 수 있겠습니다만
대부분의 사람에게 이 흐름을 단번에 파악해내는 것은 어렵다고 생각합니다. 그렇다면 우리가 처음 이 문항을 공부할 때 정리해야할 것은 어떻게 하면 문제를 효율적으로 풀어낼 수 있을지를 찾는 것이 아니라 노가다를 하든 삽질을 하든 하여 어떻게든 홀로 답을 내어보는 것일 것입니다.
그렇게 해서 정답을 내어보고 스스로의 사고 과정을 정리해본 후에 '이제 어떻게 하면 이 풀이를 최적화할 수 있을까?'에 대해 고민해보고 '더 나은 풀이는 없을까?'에 대해 고민해보는 것이 실력 향상에 직접적인 도움을 줄 수 있다고 느꼈습니다.
2024학년도 수능을 대비하는 분들 입장에서는 이제 두 달 정도 남았으니 저것들을 쌓아올릴 시간이 부족할테지만, 2025학년도 수능이나 그 이후의 수능을 준비하시는 수험생 분들 중 '내가 아직 기초가 부족하다' 싶으신 분들은 수능 수학 대비 자료들 공부하기 전에 저런 것들부터 접해보고 오시면 좋겠다는 생각이 듭니다.
중고등학교에서의 내신과 대학교에서의 학점은 반 년이라는 단기간 동안 무언가들을 쌓아올려 평가를 받아야하지만 수능을 준비하는 정시나 행정고시, 기술고시, CPA 등을 준비하는 수험생 분들께는 상대적으로 긴 시간이 주어져있습니다. 효율적인 설명만 찾아간다고 해서 실력 향상이 효율적으로 이루어지는 것은 아닐 수 있다는 뜻입니다. 저를 비롯한 대부분의 사람들에겐 홀로 탐험해보고 고민해보고 머리 깨져가며 정리해보는 경험이 선행되어야 이후에 똑똑한 분들의 사고과정을 접했을 때 폭발적인 실력 향상을 경험하기 쉽다고 느꼈습니다.
공부에 재능이 없다고 느끼거나 수학에 재능이 없다고 느끼시는 수험생 분들을 대상으로 그들이 충분히 납득할 만한 설명, 사고의 흐름을 제시하여 학습에 도움을 드리기 위해 노력하는 한 사람으로서 이 글에 담긴 메시지가 조금이나마 도움이 될까 싶어 남깁니다.
p.s. 글의 내용은 서초 메가스터디 정유진 선생님의 말씀으로부터 영감을 받아 작성했음을 밝힙니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
저 나중에 결혼같은거 잘 할 수 있죠? 엄마가 결혼해야한다 했는데 이게 친구한명...
-
ㅈㄱㄴ
-
한지 세지 1
과탐이랑 같이 할 한 과목만 정한다면 한지가 나을까요 세지가 나을까요? 다른 사탐은...
-
요요님 궁금한점 4
저분 의사신거같은데 오르비 도대체 어느틈에하시는거임 궁금하네 ㅋㅋ
-
니들도 과탐런 하면 되는데?
-
심찬우쌤 커리 18
심찬우쌤 커리 탈까 고민중인데 1. 고2 국어 모고 기준 3-4 나오는데 심찬우 쌤...
-
ㅈㄱㄴ
-
이번에 고2올라가는데 수능특강 문학 무료로 받은게 있어서 김승리t 리터러시 들으면서...
-
정체불명의 음식 2
아무거나 넣어서 끓이고 칼국수 해먹었는데 너무 맵다ㅏㅏ
-
설공 가능성 진짜 미친듯이 낮은데 괜히 투 했다가 20살 날려먹지말고 그냥 사탐을...
-
재수생입니다 다들 운동은 좀 하시나요? 6월 전후까지 주말 또는 일주일에 몇번...
-
지1 해설지 좋은 기출문제집 사려고 하는데 그냥 마더텅 사면 될까요?? 인강 안듣고...
-
수학이 옛날부터 콤플렉스라...극복해보고 싶네요
-
훈식쌤 커리 걍 지금부터 따라가면서 실모시즌에 n제랑 실모 벅벅하면 될까요 지구과학...
-
연세대 1
왜 발표안함?
-
우리 엄마가 학생때 국어 못하고 수학 잘했어서 문과가면 다 바를 수 있을줄 알고...
-
잇올 생결 질문 2
당일에 전화하면 됨?
-
588언저리에서 끊기려나용
-
드디어킬러다풀었다.. 적분기출들어간다.. 후
-
6모치고싶다 1
-
궁금하네요 제가 방장이었지만 거의 8월부터 바빠서 탈주하긴 했는데 ㅠㅠ
-
사실 첫날부터 매일 고량주 1병에다 미니 소주 두 병씩 까고 기름진 안주까지 처먹었으니....
-
키스해본사람 접어
-
이걸 후자가는사람이 있다고요? 일단 후자에서 전자로 반수하는 사람은 한트럭 봄
-
어디일까여 8
-
수학 4~5등급 0
수학 4~5등급 왔다갔다 하는데요 이미지쌤 세젤쉬 듣고있고 거의 다 들었어요 근데...
-
VOA "트럼프, 공수처 尹 체포 시도에 '도 넘고 있다' 말할 수 있어, 하지만 동맹 국내 정치 개입은 여전히 위험" 2
미국 정부 방송 VOA(Voice of America, 보이스 오브 아메리카)가...
-
김승리쌤 언매 볼륨 너무 커서 유대종쌤 들어볼까 하는데 언매 개념 베이스 좀 있긴...
-
기름 넘 맛있는데
-
홍대 경영 0
몇번까지 돌까요..? 최근 몇년보다는 좀 덜 돌것같은데... 두바퀴는 돌라나
-
일요일 하루 3시간정도 투자 (인강) 어짜피 일요일은 복습날이라 괜찮을거라...
-
논술이슈보다 고대가 신경쓰이는쪽이 더 컸으면 좋겠다 1월 2X일 조발 기원
-
시간 여유롭게 다풀어서 이건 100점 각이다 유후 하면서 15분 검토하고 채점해보면...
-
큰냄비에 라면 5묶음 6묶음파는거 다때려넣고 계란까지넣구 끓인뒤에 살짝퍼져있는거...
-
이정도뿐이 생각이 안 나요
-
수능을 좀 못봐서 경력을 쌓아보자…
-
과탐이 다 그런 경향이 있지만.. 생명 안해봐서 궁금
-
덕코드림 12
댓글보고 아무나 무작위로 줌 자고로 얼마없음 ㅋㅋ
-
중학생 4인 강의 + 자기주도학습 지도까지 해서 주2 2시간씩 주급 15만원...
-
강기분 어때요 2
문학 말고 독서가 좀 약해서 듣고 싶운데 강민철 드립으로만 사실 좀 들어봤지...
-
서울댄가
-
기름은 다 못잡았는지 좀 둥둥 뜨고...물은 좀 덜 부어도 됐을거같아서 아쉽네요 ㅠ
-
서울대 리트 상위몇퍼정도한거임?
-
스나 붙으면 반수안할듯..
-
중앙대 물리 와보셈 16
빠져줄까말까 킥킥
-
인생망하게찌 일단2학년은 끝내고 생각해보는게 맞는거겠지
-
친구가 수능 공부에 앞서 독서 지문 풀어보라고 해서 한비자 지문 도전해봤는데,...
ㄷㄷ
깜짝아..ㅜㅜ
저거 책중에 하나 골라서 풀어보라는 뜻인건가요?
ㅋㅋ
선생님.
저는 수학 공부에 재능이 없군요! 더 노력하겠습니다!
선생님께서 재능이 없으시면... 저는 과외 및 칼럼 작성 그만두어야 합니다
저 수학 못해서 넘 서러워요
순간 인성질하는 글인줄 알고 두근거리면서 왔는데 ㄲㅂ
얼굴 보고 못할 말은 온라인에서도 하지 말자.. 제 모토 아닌 모토입니다 ㅋㅋㅋㅋ 아쉽지만 다음 기회에 ^~^
수능이 얼마 남지 않았어도 남들 눈치 보지 말고
제 수준에 맞는책을 푸는게 옳은거겠죠??
남들 눈치 보며 따라가다가 +1 하는 것보다 낫습니다, 스스로에게 어떤 선택이 후회를 남기지 않을지 (혹은 덜 남길지) 고민해보셔요! 응원합니다
감사합니다 확신 가지고 후회없는 2달 보내겠습니다 ..!
주로 15번에 위치하는 귀납적으로 정의된 수열 문항들의 경우 현장에서 규칙을 바로 파악하는 것은 불가능에 가깝다고 생각하는 편이기 때문에... '삽질하는 경험' 자체가 유리하게 작용하는 문제 유형이라는 생각도 듭니다
고쟁이 ㅋㅋㅋㅋㅋ 가끔 서점가면 보이긴한데
그립네여 승범센세
문득 궁금한게, 전문가의 말은 아니지만
수학을 이미 잘하는 사람이면 저런식으로 오래 고민하는게 도움이 되지만 수학을 못하는 사람이면 최대한 다양한 문제를 접하면서 풀을 늘리는게 도움이 된다고 하던데 이에 대해선 어떤 의견을 갖고계신지 궁금합니당…
저는 수학을 못하는 사람이고… 또 컨텐츠가 넘쳐나는 재종에서 공부하는 입장에선 후자의 방법으로 공부하지 않으면 뒤쳐진다는 느낌이 좀 커서 되는대로 빨리 많이 공부했던 것 같은데 올해는 이미 얼마 안남았으니 그렇다 치더라도 이 방법을 올해 초부터 고수해왔다면 뭔가 잘못된 방법으로 공부한걸까? 하는 마음이 계속 드네요ㅠㅠ
저는 6등급에서 100점까지 경험을 가지고 있는데 솔직히 2등급 미만의 등급대라면 오래 고민하기보다는 5분~10분 정도 고민해보고 모르겠으면 해설을 듣는게 맞다고 봅니다
저도 고3 모의고사 등급 3~4등급 전까지는 5~10분 정도 고민해보고 안 보이면 해설을 따라 행동하도록 권해드리고 있습니다. 그 과정 또한 '삽질'에 담고 싶었는데 충분히 녹아들어가지 못한 듯하네요, 생각 나누어주셔서 감사드립니다!
두분다 좋은 말씀 감사합니당!! 매번 공부하면서도 금방 포기하는 것 같다는 생각이랑 문제가 안풀려서 답답하다는 생각이 공존해서 좀 마음고생을 했는데,, 다행이네요!
진짜 이번에 확통 내신 준비하면서 뼈저리게 느낌...무조건 맞말 ㅜㅜ
저는 이 말 동의 못하겠어요.
삽질하던 경험이 긍정적으로 선생님 말씀처럼 갈 수도 있겠지만,
적절한 피드백이 없는 경우에는 오히려 출제 의도 파악은 둘째로하고, 계속 삽질했던 그 경험대로 돌아돌아갈 거라고 생각해요. 제가 직접 경험도 해봤기도 하고요.
교수자의 지시와 피드백대로 다시 잘 생각을 교정하니 그때서야 제 성적과 실력이 올라가는 것을 확인할 수 있었습니다.
이 글은 삽질을 하면 성적과 실력이 올라간다는 내용이 아닙니다. '교수자의 지시와 피드백대로 다시 잘 생각을 교정하니 그때서야 성적과 실력이 올라가는' 경험을 하기 위한 준비 과정을 다루고 있습니다! 만약 홀로 고민해보는 시간을 가지지 않은 상태에서 무작정 교수자의 지시와 피드백만을 따라간다면 어떠할까요?
제가 그렇게 공부했었는데, 고등학교 2학년 때까지 '수학적 사고력'을 기르지 못했다는 생각이 들었습니다. 다시 말해 무작정 남의 생각을 수용하기만 해서는 실력 향상에 한계가 있다고 저는 생각합니다. 따라서 홀로 고민해보고 부딪혀보는 시간을 확보하라는 말을 '삽질을 많이 해봐라'라는 메시지로 전하고자 했습니다! 아마 우리는 같은 생각을 하고 있는 것일테고 작성자 님께서 특정 부분에 초점을 두고 받아들이신 것 같습니다 :)
이거까지 보니까 같은 이야기하는거 같긴 하네요.
저는 과도히 혼자 고민하는 것은 독이 될수도 있다고 이야기하고싶었어요.
수학적 언어 감각을 키워야한다는 것엔 동의합니다.
저도 동의합니다, 효율적인 풀이를 따라가는 것과 홀로 깊이 고민해보는 것 사이의 균형을 적절히 맞추는 것이 중요하다고 생각합니다. 시간 내어 생각 나누어주셔서 감사드립니다!!
헉! 마냥 기다리진 않을래~
의대생 분들은 잘 공감이 되지 않으실 수도 있을 것 같습니다 ㅋㅋㅋㅋ 평범한 이들을 위한 수학 학습법에 대해 이야기하고자 했습니다
저거 다풀어봤으면 ㄱㅊ
ㄷㄷ 수고하셨습니다 선생님
크게 공감합니다 저런 내신대비용 문제집들을 수능 기출 본격적으로 공부하기 전에 많이 풀어제끼면 은근 피지컬 기르는데 생각보다 꽤나 도움 되는 것 같아요.
저도 어떻게 한완수를 접한 지 며칠 되지 않아 폭발적인 실력 향상을 경험했는가... 에 대해 생각할 때 중학생 때부터 풀어온 수 권의 문제집들이 큰 힘이 되었다는 결론에 도달할 수 있었습니다. 아직 고등학교 3학년이 아니거나 제대로 수학 공부를 시작한 지 얼마 되지 않았다면 내신 대비 문제집들부터 여러 권 풀어보는 것이 바로 수능 강의 듣는 것보다 더 도움이 될 수 있는 듯요!
비추박으려다 개추...!
저거 21번 아닐껄요
제가 현역때 수능장에서 본거라 기억함
문제에 21번이라 쓰여있기도 하고, 다시 확인해봤는데 2019학년도 수능 가형 21번 맞습니다!
헐맞네여 죄송합니다 ㅋㅋㅋㅋ착각했네요
혹시 2020학년도 9월 가형 30번이랑 착각하신 건가요? 둘 다 양변 적분할 때 치환적분법이 쓰이고 적분상수와 다른 상수값들 결정한다는 점에서 본질적으로 같은 문항이라 생각하고 있습니다
아뇨 ㅋㅋㅋ당해 수능 14번이랑 착각했네요
아하 지수부등식 문제! 그거도 깔끔하다고 생각합니다
혹시 저 책들 푸는 순서 알수있을까요??
1. 쎈, rpm, 개념 원리, 바이블
2. 마플 교과서, 마플 시너지
3. 올림포스, 올림포스 고난도, 고쟁이, 일품
4. 마플 수능기출총정리
이렇게 나누어볼 때 1->2->3->4 순서 권해드립니다! 각 그룹 내에서의 순서는 무관합니다, 마플 수능기출총정리 공부하실 때에는 평가원 기출 문항을 분석할 수 있는 다른 자료 (메가스터디 현우진T 수분감, 시대인재books 이해원 한 권으로 완성하는 수학, 일산5A 한성은 기출분석&수업이 곧 시작됩니다 ...) 학습을 병행하시길 권해드립니다.