Farewell[1] : 초전도치
게시글 주소: https://d.orbi.kr/00066251424
약간의 변심으로, 간단한데 임팩트 있는 스킬 뿌려 놓고 가겠습니다. 은퇴선물..?
제가 풀이 칼럼을 올리지 않은 시점부터 만든게 많은데, 다 끌어안고 가려고 했다만, 저한테 무슨 느낌의 스킬들이 있었는지 적는것도 나쁘지 않을 것 같아서요. 다 계산을 최대한 쉽고 빠르게 하는 방법론이었어요. 이 스킬은 과외 수업 도중 발견한 스킬로, 이름도 그 수업하던 학생이 이렇게 하자고 했습니다.
뭐 아무튼, length(Farewell)=3으로, 다음 글이 마지막 글입니다.
이걸 원래 쓰는 분이 계셨을수도 있고 아닐수도 있고.. 뭐 아무튼, 이제는 제가 글을 올려버렸으니, 산화수에서 산화수법으로 풀어야 하는 문제에 한해서 이렇게 풀지 않으면 손해가 생길겁니다. 원래 이렇게 풀던 분이 있던 없던, 이 풀이도 공론화가 된 풀이는 아닌 것 같기 때문에..
앞으로 이 풀이를 보면 어 초전도치 아니냐? 해주시면 감사하겠습니다.
중요한 부분이 있는데요,
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
이 방법은 초전도체입니다.
전하량 보존으로 풀 수 있는 산화수 문제의 경우 이 스킬을 사용하면, 전하량 보존을 사용했을때보다 계산량이 같거나 아주약간 큽니다.
이것만으로도 좋긴 합니다. 보통 전하량 보존이 너무 유리하거든요. 산화수법이 유리해 보이는데? 싶었는데 알고보니 전하량 보존이 더 유리했으면 지옥의 계산을 경험하신 학생들이 많을겁니다.
이해하기 쉬운 내용이니, 문제 하나로 끝내겠습니다.
그 전에 간단한 개념 설명을 하겠습니다.
우선 산화수법을 우리가 어떻게 사용하는지 봅시다.
산화수가 변화하는걸 화살표로 표현하고, 원자 A, B가 산화환원 반응에 참여한다고 생각합시다.
그럼 다음과 같이 표기할 수 있을겁니다. 다음 상황은, 원자 A는 산화수가 -1에서 3이 되고, 원자 B는 산화수가 4에서 2가 되는 상황입니다. 그러면 산화수와 계수를 맞추면...
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이렇게 표시할 수 있겠죠.
바로 일반화 들어갑니다.
A: a -> b (x m)
B: c -> d (x n)
이런 산화수 변화 상황이 있다고 합시다. 이 식이 성립하려면
n(c-d) = m(b-a) 가 성립해야 할 겁니다. (산화 환원 여부를 몰라도 부호만 반대면 되겠죠?)
전개합니다.
ma + nc = mb + nd
이 꼴이 나오는데요, 다시 위의 예시를 들고와서 이게 뭔 뜻인지 살펴보면..
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
일반적으로 알려진 방법 대신,
-1 x 2 + 4 x 4 = 3 x 2 + 2 x 4
이런 식으로 왼쪽끼리 곱해서 더하고, 오른쪽끼리 곱해서 더하고.. 를 확인하는 식으로도 산화수 매칭이 성립하는지 확인할 수 있습니다.
일단 이것만 보면 별거 아닌데요..
이항이 가능합니다.
(이래서 이름이 초전도치)
뭔 소리냐면
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이걸 A쪽은 -1을 이항하고, B쪽은 2를 이항합니다.
A: 0 -> 4 (x2)
B : 2 -> 0 (x4)
이러면 암산으로도, 이 산화수 매칭이 성립한다는게 확인이 가능하네요.
뭐 아직도 별거 아닌것 같습니다. 이 스킬은 문자가 포함되어 있을 때 그 진국이 나오는데..
이 문항 하나로 끝내고, 여러분들이 연습을 해 주시면 될 것 같습니다.
이 문제가 대표적인 "산화수법이 유리한 문제"인데요,
두번째 조건과 반응식에서 Y의 산화수를 확인하면 우선 다음과 같이 표현할 수 있습니다.
X : ?(m으로 표현됨) -> +n (x1)
Y : +n-1 -> +n (x3)
그리고 세번째 조건을 사용하면 다음과 같이 산화수 변화를 표현할 수 있습니다.
X : +3(n-1) -> +n (x1)
Y : +n-1 -> +n (x3)
여기서 한번 암산으로 어떻게 이항 하면 이쁘게 풀릴지 생각 해 보시는걸 추천드립니다.
(스포방지용 간격)
왼쪽에 n, 오른쪽에 상수를 몰아주는 편이 제일 좋습니다. 이러면 추가 이항이 안 생깁니다. 다음과 같이요.
X : 2n -> 3 (x1)
Y : 0 -> 1 (x3)
이제 (물론 암산으로 충분하지만)
2n x 1 + 0 x 3 = 3 x 1 + 1 x 3
이므로 n = 3입니다.
축하합니다. 이제 여러분들은 231114와 그 강화형 문제들을 암산으로 푸실 수 있습니다. 물론 굳이 암산으로 할 필요는 없고 위 처럼 정형화된 틀에서 이항시켜서 문제를 푸시면 됩니다.
한번 N제를 꺼내서 산화수법 문제를 풀어보면 231114보다 체감상 차이가 더 심할겁니다.
꼭 체화하고 쓰시길 바랍니다. 알고 모르고 시간차가 꽤 납니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
고3입니당 수분감 후 뉴런 후 n제 전 기출 함 더 보려고 하는데 고2 모고 3등급...
-
올해는 0
연고 스나할 때 어문대신 상경을 쓰는게 ㄹㅇ 정배일려나요
-
그 누구보다 결과물이 비참하다고 자부할 수 있음
-
수면시간기록용 0
-
엄청난 고민끝에 0
걍 지1할게요 투과목은 넘 무서워ㅠㅠ
-
19국어 간절함어쩌고글 댓글보고있는데 노란? 황금? 에피에 닉네임도 노란색인 계정은...
-
26년이 올까요 1
안 오지요 100% 안 오지요
-
ㅈㄱㄴ
-
현정훈 복테 0
5점이상 맞아본적이 없엉ㅠㅠ
-
재능 0
https://www.instagram.com/reel/DFaPMCETFv-/?igs...
-
커서 무서워
-
으허억..
-
더 미친듯이 달리면 됩니다 가만히 있어봤자 바뀌는거 없는듯
-
응, 알아
-
설공 목표로 재수하는데 생1이랑 같이할 과탐 하나 골라주세요 25수능 생명1...
-
작수 국어 화작 4등급 문 열었음 강민철t 강기분 + 새기분 문학 + 우기분 +...
-
컨설이 분명히 된다고 하면서도 60프로 정도란 말에 넘어가서 막판에 안넣고 그냥...
-
얼버기 0
다시자야지 한시간만..
-
예시로 김기현 파데랑 킥옾을 할때 저는 수업듣고 파데는 모든 문제 다풀고, 킥옾은...
-
죽는줄 알았네 진짜
-
개빨리품 이건
-
얼부기부기밤밤 0
레츠고바기바기붐붐
-
얼버기 3
-
얼부기온앤온 0
-
배가 넘 아파 5
햄버거의 부작용..
-
중학 영단어장 헷갈리거나 모르는거 총정리하려 하는데 고ㅑㄴ찮나요 올해 고2에요
-
짬뽕밥 맛집없나 4
개땡기네
-
실수를 해버렷구나.. 맞네..
-
고등학교 0
오로지 대학 진학을 위해 등수를 매기는 곳, 생기부를 채우는 곳 그 이상도 그...
-
쟤가 날 갠소 1
하고싶대소
-
다들 어케하심?
-
망자들 집합
-
신승범 선생님 미적분2 수학적 접근(하) 교재 갖고 계신분 사례합니다. 0
신승범 선생님 미적분2 수학적 접근(하) 교재 갖고 계신분 있을까요?? 2015...
-
기차지나간당 11
부지런행
-
큰일...
-
이 작가는 평생 로맨스만 그려야한다구 셍각해요 이색히들 이때 친구였음 남사친여사친은없다
-
올려주세요
-
너무 피곤해서 내가 뭐라고 칼럼을 ㅋㅋ서ㅛ느디도 모흐셌음 허ㅛㅛㅗ리만...
-
다 맞앗다 3
흐흐흐
-
첫키스 11
두키스
-
여자애 얼굴이 ㄹㅇ 이뻤음
-
이거 구라임 반례를 너무 많이 봄 그게 나쁘단건 아니고 걍 사람마다 다른거임 자랑하고 싶을 수 있지
-
바로 제 선택과목들입니다... 어디가서 홍대병 걸렸냐는 소리 듣는건 아니겠죠 나름...
-
자, 문제 보시죠. 5번 선지만 확인해 보겠습니다. 다 수필의 내용은 대충, 다...
-
목표 11
베테 5개 풀고 자기
-
Goat
-
쪽지하는사람 내 지인인거같다.. 증거가 너무 많아
-
ㅈㄴ힘들구나
-
24수능 언매 현장응시 백분위 96 1등급 25수능 화작 현장응시 백분위 97...
존경합니다 논화님 바로 개추 와바박 박았습니다
Goat...
ㅅㅂ 화학은 이런것까지 해야하는구나 역시 물리가 답이네
물리나 화학이나..
역시 수능 화학은
이런 기괴한거까지해야하나
잉 진짜 쉬운데 걍 이항하고 곱하면 끝나니깐..
화2 칼럼도 부탁드립니다
쉽고좋은데 댓글공작오지네요 저런거때문에 회학선택자 줄어드는거임
지금까지 올린 스킬중에 제일 쉬움ㅇㅇ...
그러면 화학이 ㅈㄴ어려워서 하면 안되는 과목같잖아요;
초전도치야 고마워!
진짜신기하네요
처음엔 어 은근 복잡하지 않나? 싶었는데 이항이 되는게 진짜 괜찮네요 좋은 스킬인듯 ㅎㅎ
초전도치야고마워
이게 개쓸데없는 지엽스킬처럼 느껴진다면 기출/n제 학습을 안해본게아닐까요
이거보다 쉽게 설명할 수 있는 방법도 없고 적용 방법도 간단하고 여타 강사들마냥 스킬 사용 조건 대충 규정해놓은 것도 아니고 스킬 사용시에 유의미한 시간절약이 가능하고
원래 과탐 영역에서의 스킬이라는 게 “훈련되면 특정 상황에서 무지성으로 적용”해서 시간을 절약할 수 있기 때문에 의미가 있는 것인데(평소에 사고력을 사용해서 푸는 데 걸리던 시간을 절약할 수 있으므로) 그 의미와 필요성에 대해 스스로 생각을 안 해보는 사람들이 생각보다 많음
미지수가 있더라도 이항한 결과를 적어서 세로로 계산하는 것보다 산화수 차를 바로 계산하는게 더 빠르지 않나요..? 위 상황에서도 산화수 차가 2n-3, 1인게 바로 보이고요..
저문제가 쉬워서 그럼