[이동훈t] 기출로 기출 풀기 (241128) 미적분
게시글 주소: https://d.orbi.kr/00067438040
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
기출로 기출 푸는 법에 대한
얘기를 해보려고 합니다.
이 글은
기출 분석을 어떻게 해야 하는가에 대한
구체적인 예시가 될 것입니다.
22 학년도 수능 미적분 30 번
24 학년도 수능 미적분 28 번
이 두 문제로 설명해보겠습니다.
본론 들어가기 전에
수학 기본 체력에 대한
아래의 글도 함 읽어보시고요.
[이동훈t] 수학은 피지컬이지. 딴거 있나.
이제 가보자고 ~
시험장에서
위의 문제를 읽고 나서 바로 ...
푸른 칸 : 함수 f(x)의 정의 (방정식, 그래프)
붉은 칸 : 점의 이동 (대칭/평행/확대축소) + 식의 변형(필충관계)
위의 두 가지가 떠오르지 않았다면
아래 문제에 대한 이론적 복습이
부족한 것입니다.
위의 문제에 대한 자세한 해석은
아래의 글을 참고하시구요.
[이동훈t] 수능 난문 만드는 법 (+221130, 231122) 수학2, 미적분
22 학년도 미적분 30 번과
24 학년도 미적분 28 번은
큰 틀에서 문제의 구조가 같고,
소재로 보면 자매 입니다.
221130(미적분)은
점의 확대축소로
두 함수 f(x), g(x)를 결정하고,
(적분계산: 부분적분법(역함수의 정적분+기하적해석))
241128(미적분)은
점의 평행/대칭이동, 확대축소로
함수 f(x)의 방정식을 결정합니다.
(적분계산: 치환적분법)
2년 전에 확대축소만 출제되었으니,
평행/대칭이동의 관점까지 추가해서 출제한다.
그리고 부분적분법에서 치환적분법으로 바꾼다.
교육과정에서 보면 ...
평행이동 + 대칭이동 + 확대축소 = 점의 이동
부분적분법 + 치환적분법 = 초월함수의 적분법
이고 ...
이건 평가원 출제자들의
전형적인 출제 방식을 보여줍니다.
즉, 출제자들은 본인들이 만든 문제 A를 보면서
A 합 A^C = 전체
에서 A^C 에 해당하는 지점을 찾기 위해 노력 한다는 것입니다.
이렇게 하면
각 문항의 정답률을
원하는 대로 얻을 확률이 높아지지요.
나는 28 번 문제 생김만 보고서
' 아 이건 재작년 30 번에서 나온 문제네. '
라는 생각이 들었는데요...
안정적인 만점을 노리는 분들은
이 정도는 쉽게 보여야 합니다.
.
.
.
교육과정의 체계에서
이 문제를 분석해 볼까요 ?
f(9)/f(8) 의 값을 구하라고 하였으므로
함수 f(x) 의 방정식을 유도해야 합니다.
이때, 상수 k 의 값을 결정해야 하니,
구간 [0, 7] 에서의 정적분 값이 e^4-1 이다.
에서 k 의 값이 유도된다는 생각을 할 수 있어야 합니다.
중/고등 교육과정의 체계상
집합 -> 함수 -> 정적분
이므로, 이 문제의 주어진 조건에서
집합(정의역, 치역),
함수(의 방정식, 그래프, ...)
를 우선 살펴보아야 합니다.
함수(즉, 그래프)는 점들의 집합이므로
곡선 y=f(x) 가 지나는 점을 찍어야 한다.
곡선 y=f(x) 가 반드시 지나는 점을 찍으면
(g(t), t), (h(t), t)
인데. 붉은 칸에서
h(x) = k - 2g(x)
라고 하였으므로
(g(t), t), (k-2g(t), t)
입니다. 이때, 점의 이동의 관점에서
k-2g(t) 는 x 축 위의 g(t) 를
y축에 대하여 대칭이동시킨 후,
y축에 대하여 2배 하고,
x축의 방향으로 k만큼 평행이동시킨 것입니다.
이제 아래의 그림과 같이
함수 f(x)의 그래프를
그릴 수 있습니다.
(아래는 2025 이동훈 기출 미적분 풀이)
위의 풀이에서
정의역 : 실수 전체의 집합 = (-inf, 0) 합 [0, k) 합 [k, inf)
치역 : 음이 아닌 실수 전체의 집합
함수 : 두 구간 (-inf, 0], [k, inf) 에서 일대일 대응(방정식까지 유도됨)
구간 [0, k]에서 f(x)=0 (<-귀류법 이용)
정의역을 2개 이상의 집합으로 쪼개는 것,
각 구간에서 함수 f(x)의 방정식을 결정하고,
성립하는 성질을 생각하는 것,
귀류법을 적용하는 것,
막상 직접 출제 범위는 별 것 없는 쉬운 계산이라는 것,
... 등등이
이건 수능 문제야 !
라고 말하는 것 같습니다.
(이 문제의 경우에는
세 개의 구간으로 쪼개서 ...
두 개의 구간에서는 일대일함수,
나머지 한 구간에서는 상수함수임을 밝혀야 하지요.
이 과정에서 귀류법을 써야 하고요.)
.
.
.
잘 만들어진 수능 문제를 보면 ...
출제자들이 교육과정과
본인들이 만든 기출 문제를
얼마나 잘 이해하고 있는지를
알 수 있습니다.
.
.
.
이번주 중에
2024 수능 수학에 대한 심층분석글을
올려드릴 예정입니다.
또 만나요 ~~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
반갑습니다. 크럭스(CRUX) 컨설팅입니다. 2025학년도 컨설팅 신청 방법과...
-
어디가는게 좋을까요 이유도 같이 알려주세요!!!
-
스나 성공은 몇칸부터 가능할까요?? 0칸이나 1칸은 스나 아예 불가능한거죠...?...
-
컷 주변에서 낭떠러지가 많으면 스나 성공확률이 높다는데 6명 뽑고 저는 38명 중에...
-
정시상담 최종 예약 11
[CRUX 컨설팅] 정시상담 최종 예약 크럭스 컨설팅입니다. 극적으로 수시 마지막...
-
서성한 스나이핑 0
언미물지 선택으로 88 98 3 88 97 인데 서성한 스나이핑 가능할까요??
-
[크럭스 정시 상담] 신청을 위한 핵심 유의사항 ⇨ 전타임 마감, 상담예약 대기...
-
예전에 작성해둔 자료 파일로 첨부하겠습니다. (너무 길어서 워드 파일로 작성한...
-
낙지 안정? 0
여러분들은 어떻게 생각하시나요??
-
3.4가 튀어나올 줄은 몰랐는데 ㅋㅋ...
-
연대 낮문 최초합~추합 성적대 애들은 대부분 나군에 설대 쓸 점수 안돼서 서강 문과...
-
연대문과중에 2
노어노문 불어불문 독어독문 아동가족 생활디자인 사학 철학 ㅇㄷ스할까
-
칸수 556 어떰? 10
반수할 생각이라 하나는 무조건 붙어야하는데..보통 이렇게 많이들 쓰나요?
-
충북대 충남대 인하대 연원의 싹다 3칸 3칸 3개년 합격률 각각 3.4퍼, 0퍼,...
-
국어가 가채점보다 2개정도 더 틀렸나 보네요 ㅜㅜ 건동홍중 2개 쓸려고 했는데...
-
레어 있나?ㅋㅋ
-
가즈아? 가즈아!!!!!!!!!! 성글경? 아니다 답은 설대 스나다 가즈아!!!!!
-
3수 확정!! 4
삼수생예정 3칸 가나다 3스나 가즈아아아아아아아
-
스나 질문 0
표본 분석할때요 그때 빠질 것 같은 인원 제했을 때에도 정원 안에 못들 것 같으면...
-
홍자전 정원은 81명이고 제목이 곧 내용입니다ㅠㅠㅠㅠ 가,나군은 스나하려는데ㅠ
-
S대 저격갑니다
-
올해 설대 한국사때무네 가능성은 있어보이던디 ㅇㅅㅇ
-
과탐 1점씩 차이 때문에 결국 3최저 광탈에다 어제까지 깔끔하게 6광탈했네요...
-
연고대 하위과 스나 가능할까요? 제발 한번만 조언 부탁드립니다.. 2
연고대 스나 가능할까요?
-
너무 조용하네요ㅜㅜ 667대 ㅈㄴㅅ 3칸 ㅍㅇㅌ 55퍼 스나질렀는데 폭인가요??ㅠㅠ 도와주세요ㅜㅜ
-
궁금한거하나 6
연대 하위과 중에(문이과포함) 실내건축가겠다 아동가족가겠다 생디가겠다 이런...
-
스나할때 2
ㅈㄴㅅ에 모의지원에 이미 그 과에 지원할 거 같은 고득점자가 있음 어떻게합니까..
-
다군 스나 0
라는게 존재?
-
역대 스나 결과랑 비교했을때도 이성적으로 서강대는 무리죠? 9
아는분이 꼭 넣으라고 하나 던지는거 손해볼거없다고 그러시는데 서강은 구멍이 잘...
-
경희 가군에 박고 나군에 한양대쓸려구햇는데 정시에 대해 하나도 몰라서요 좀 도움좀...
-
의대 위험지원 27
가군 중앙의 나군 한양의다군 단국의20퍼 10퍼 30퍼던데 이렇게쓰면...
선생님 쪽지 좀 봐주세요.
답장 보냈습니다. 감사합니다. :)
혹시 교재에서도 이러한 기출 간의 상관관계에 대해 언급해주시나요?
2025 이동훈 기출은 유형별 구성이며, 각 유형에 대한 실전 개념이 포함되어 있습니다.
위의 두 문제의 경우 ... 30번은 역함수의 미분법, 28번은 치환적분법에 해당하므로 같은 유형이 아닙니다. 다만 점에 대한 해석의 관점에서 같고 ... 이에 대해서는 실전 개념에서 설명하고 있습니다. (다만 위의 칼럼 처럼 직접적으로 두 문제를 대조비교하는 것은 아닙니다. 점의 해석을 어떻게 할 것인가에 대해서 실전 개념에서 다루는 것입니다. 이에 대한 문제는 워낙 많기 때문에 ... 위의 설명 처럼 두 문제만 딱 짚어서 대조 비교 하기 힘듭니다. 책이니까요.)
자세한 책 소개 글은 아래를 참고하세요. 감사합니다. ~ :)
[이동훈t] 2025 이동훈 기출 사용법 (+실물사진)
https://orbi.kr/00066537545