수학 급합니다!!! 다항식에서 미지수의 차수는 무조건 자연수인가요??
게시글 주소: https://d.orbi.kr/0006895897
제목이 곧 내용입니다~~ 카이스트 면접 대비하는데 헷갈리네요,,ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그럼 오티 가면 수시애들은 이미 지들끼리 친해진거임? 0
아오시발 정시 서러워서 살겠나
-
술 먹고싶다 0
-
며칠후에 갑니다 팁 있으면 알려주세요 뒷풀이 안가는데도 친구 사귈 수 있나요? 너무 떨리네요
-
오르비 2
-
사문지구로 볼예정인데 방학때 개념기출까지만 해도되나요? 수학이나 국어가 되게 급해서요;
-
이거 정시차별이여
-
어느 정도 하고 가는 게 도움은 될까요?
-
이게 전생이랑 연관이 있다는대 어떤 풍경보면 뭔가 익숙함 근데 신기한 게 꿈에서도...
-
저는 23수능 화작 컷보고 기겁함
-
마라탕2만원정도먹고ㅡ>도넛 루틴됨 맘먹고찾으면특정되겠네
-
학교 도서관 으흐흐 13
자 이제 도서관에서 절 찾아보세요 절 찾으시면 오늘 저녁 사드립니다
-
원래는 하나하나 꼼꼼히 대조하고 본문 찾아서 풀고 그러는데 카페인 먹으면 걍 감에...
-
고민 좀 더 해볼거같긴한데 하게된다면 수능때 영어 미끄러져서 확실히 잡아두고싶은데
-
집회X발
-
사라지기 4분전 2
잇올.. 그들이 오고있어 시간을 멈춰야만해
-
https://youtube.com/shorts/Moc49qvc08c?si=cMVlP...
-
엉덩이가 아파 1
엉덩이 운동 하니까 엉덩이가 아프다
-
ㅇㅇ
-
제일 자주 쓰는거
-
제주도 노잼이네 9
어릴때 이후로 안와서 다시 한번 와봤는데 역시 일본이 더 재밌긴 하네.
-
어떤게 재밌나요
-
유쾌 유쾌 한가요 아님 좀 음침한가요
-
맞팔구 7
-
히고 먹어보고싶다....... 진짜 ㅈㄴ 맛있을듯
-
한양 맛집 8선 0
대학커뮤니티 노크에서 선발한 한양대 선배가 오르비에 있는 예비 한양대학생, 한양대...
-
안녕하세요..! 지구과학을 좋아하는 현역학생입니당 심심할때마다 문제를 만드는데요!...
-
확실히 물2가 재미있긴 하네
-
전 얘가 제일 좋더라고요
-
ppt 만들어서 발표할껀데 검토해주실 분 계심요?
-
표본 어느정도 들어왔나요? 설경 낸건 아닌데 궁금해서.... 중상위 표본들이 좀 들어왔나요?
-
메인 ㄷㄷ
-
수능에서 2맞는건 좀 껌이구나;;
-
오후에 일어나본거 인생에서 첨임...;;;;;
-
여자되고 싶다 19
내가 여자였으면 진짜 하루종일 ”그거“ 할듯
-
소설읽는데 4
이거 뭐임ㅋㅋ 너무하네
-
ㄹㅇ ㅇㅇ 근데 이걸 칼럼이라할수있나?그냥 썰이라할까?
-
여자한테 저렇게 왔으면 좋았겠다..하고 내 인스타그램 별명설정을 여자이름으로 해둔거였구나
-
전 60점
-
고려대는 당장 조기발표해라
-
나 친구(남자)들한테 맨날 심심할때 @@아 뭐해? 보냈는데 ㅅㅂ
-
강북도 그닥인가
-
시간당 3만원이면 단과보다 비싼데 그만큼 효율이 있나
-
통합사회와 한국지리는 전혀 접점이 없고 문제도 지리 교사가 낸 것같지 않지만...
-
백분위 0 5
상위100%
-
모솔아다삼수생이 여자친구 사귀려면 어떻게 해야하나요?? 8
진지합니다.
-
이대 조발 ㅈㅂ 2
조발 안하기로 유명해서 할 가능성은 없지만 그래도 15일을 언제 기다려 OTL
x+3 -> 3은 0차 아닌가요...?
아! 상수항 제외하고요!! 죄송합니다
...문득 이 질문을 보면서 - 저도 제대로 답은 못하겠지만 - 처음부터 공부 다시 해야겠다는 생각이 드네요. 차수가 음수면 분수함수고, 다항함수가 아닌가...? 싶기도 하고, x의 루트2승이면 어떡하지...? 싶기도 하고... 아무튼... 답은 못드리지만 배워가요-
지수법칙 유도과정생각해보시기 바랍니다
일단 지수법칙은 정수에서 정의합니다
그리고 a^0을 정의하고 음수로까지 확장합니다
그리고 이것을 분수로서 정의하죠
그리고 거듭제곱식을 정의하고 유리수로서 정의합니다. 즉 분수꼴은 무리식이라는것을 증명할수있죠
실수는 교과과정상 그냥 받아드립니다
대충 이정도에서 서술하면 적어도 감점은 없을것같네요
오... 생2괴물 키랄님이 댓글을 달아주시다니..ㅎㅎ
지금 문제의 조건이 x^a 에서 a가 0초과라고 제시되어 있는데 이걸 미분한 ax^(a-1)에서 a-1이 0이상이라고 봐도 되는지 궁금해서요~~
지금 정확히 어떤지점이 문제가 되는지 명백하게 다시 좀 써주시겠어요?
만일 a가 '음수가 아닌 정수'라는 제한조건이 안나와있다면 a-1을 0이상이라고 볼수 없습니다(음수가 될 수도 있기 때문에)
그런데 만일 a가 '음수가 아닌 정수'라는 제한조건이 걸리게 된다면 a-1을 0이상으로 봐도 무방해서 이렇게 질문 드립니다
그런데 밑에 lemonaid님이 올려주신 거에 따르면 후자가 맞는것 같네요!!
정말 감사합니다~
다항함수의 미분에서 양수일때는 인수정리를 통해증명하고 음수는 몫의미분으로 증명하고 유리수는 음함수미분 실수는 로그 미분으로 증명된상태인데 어떤지점이 이해가 안가시는건가요?
일반적으로 차수내리고 하는거를 그냥 배우긴하지만 일단 교과과정내에서는 실수까지 확장시켜놓고 학습시키고 있습니다
일반적으로 집합 R 위에서의 X를 변수로 하는 다항식은 다음과 같이 정의한다.
anxn + an-1xn-1 +...+ a1x + a0
단, n은 음이 아닌 정수이다. 이때 a0, a1, …, an을 다항식 f(X)의 계수(係數), ai≠0인 i의 최대값을 f(X)의 차수(degree)라 하고, deg f(X) 또는 deg f로 쓴다. an이 0이 아니면 f(X)는 X에 대한 n차 다항식이다. f(X)의 계수가 모두 0일 때는 그 차수는 정의되지 않는다.
[네이버 지식백과] 다항식 [polynomial, 多項式] (두산백과)
차수가 실수로 확장되는 건 다항식으로 보지 않는 것 같은데... 제가 틀렷나요?
차수를 실수로 확장시키는 건 따로 '다항식'이라고 부르지를 않는 것 같습니다
제가 면접 문제를 풀면서 이해가 안된 것은 문제에 '다항식'이라는 조건이 그냥 툭 던져졌는데 여기에서 x의 차수를 0이상인 정수로 봐야되지 않을까~ 싶어서 질문드렸습니다!! 이렇지 않으면 문제가 안풀려서요~~
P.S:UAA모의고사 너무 잘풀었습니다!ㅋㅋ(공동저자분 중 1명 저희 학교..ㅋㅋㅋ)
아 약간 혼선이 있었네요
제 말의 의중은 그 알고계시는 미분법은 다항함수던 아니던 편하게 사용할수있다는 의미였고 다항식의 정의는 음이 아닌정수가 맞습니다
예를들어 기출에서도 극한문제에서도 다항함수라고 주어진경우에는 차수를 결정지을수있다
여기서도 자주 사용되는 이론이기도 합니다
제가 말씀드리고 싶은거는 지수의 확장에서 배운내용에 의거하면 음수인경우는 분수꼴이므로 다항식이 아니고 약분되지않는 유리수형태인경우 무리수임을 인지하게 함으로서 다항식이 아님을 그냥 고교수준적으로서 설명해드릴려는 의중이었습니당
네 키랄님 정말 감사합니다!
넵! 도움되셨다면 저도 기쁘네요!
일반적으로 집합 R 위에서의 X를 변수로 하는 다항식은 다음과 같이 정의한다.
anxn + an-1xn-1 +...+ a1x + a0
단, n은 음이 아닌 정수이다. 이때 a0, a1, …, an을 다항식 f(X)의 계수(係數), ai≠0인 i의 최대값을 f(X)의 차수(degree)라 하고, deg f(X) 또는 deg f로 쓴다. an이 0이 아니면 f(X)는 X에 대한 n차 다항식이다. f(X)의 계수가 모두 0일 때는 그 차수는 정의되지 않는다.
[네이버 지식백과] 다항식 [polynomial, 多項式] (두산백과)
정말 감사합니다!
음이아닌 정수 n에 대하여 fx= anx^n+an-1x^n-1 +...+a0 [an~a0는 실수]를 다항식 이라고 부르는거 아닌가요?