-
오 중앙의 에타 0
통과 빠르노 ㅎ ㄷ ㄷ ㄷ
-
. 1
학교 옮기게 되면 에타는 어떻게 바꾸나요
-
제발요 친구가아예업ㄱ는건 아님
-
아가 기상~ 0
다들 쪼아!(좋은아침)
-
의대 휴학 1
올해도 휴학할 가능성이 높다고 들었는데 휴학하면 기숙사 등등은 어떻게 하나요?...
-
도저히 못참겠다 2
자야겠다
-
자기 성격이 엥간 인싸가아니라면 새터안가고 친한 과 동기들이나 선배 만들기...
-
내 진양철이다 8
오랜만에 보는데 너무 좋다..
-
영수 노베인데 학원 다니지 말고 현우진 노베나 이미지 기초 수학으로 커버 가능 할까요?
-
의대에 대한 관심이 사라진 지 오래 + 관련 공부에 대한 흥미 급감 + 요즘 이슈...
-
비염약 받으러 이비인후과 갔는데 개뜬금없이 몸살감기 이러길래 감기증상이 하나도...
-
과탐은 안하는게 잘하는 법이라고 해줌
-
여름방학부터 논술 학원 열씨미 다니면 되는 정돈가요?
-
이게 뭐냐? 안가고 말지.. ㅎㅎ
-
진짜 이러다가 죽는거아닌가하는 기분이들음
-
영어 과외하는데 2
학생이 듣기를 자꾸 틀리네 ㅜㅜ ㄹㅇ 요새 애 상태를 파악하고 있는데 단어 상태가...
-
올해 만약에 화학 컷 내려가면 배 아플거 같음
-
걍 나옴 이 돈이면 걍 운동하는데 쓰고 미용실펌하고 맛있는 거 먹는 게 낫겠다
-
병원인데 0
무섭다
-
정원 한자리수인 극소수과는 무조건 거르고 봤습니다... 어둠의 표본 한두 명만...
-
쌍수경례 0
헉
-
좀 알려주십쇼 조기발표하면 언제쯤 할것 같은지도 부탁드리겠습니다
-
너무 아프네 9
내일 기말고사인데 무언가에 의해 병에 걸렸읍니다 모두 독감 조심하십소
-
굳이 얘기 안하고싶은데 아빠는 왜자꾸 꺼내는지 머르깃음 어차피 서로 절대 이해못하고...
-
그리고 3~4명은 솔직히 너무 적게 뽑잖아...
-
볼때마다 눈물이 찔끔 나올거같음
-
고른다면 뭐 고르시나요? 저는 설의여도 전자 고를듯..
-
어째 갈수록 퇴화하냐
-
본인 현대시 거의 싹다 감으로 풀고 문학 기출 거의 안해봤고 거의 두지문에 한개씩은...
-
영어오답 1
해야하나여 일주일에 푸는 영어 문제 합쳐서 모고 3개정도 분량은 되는 것 같은디...
-
어른들: 서울대 붙었다고? 대단하네~ 과가 어디야? 나: 수의대요. 어른들:...
-
확인해주시겠어요? ㅠㅠ
-
우리나라도 지거국을 예전처럼 살려야할텐데
-
배민으로 시키려다가 방문포장이 더싸다는걸 생각했어요
-
ㅇㅈ 1
자아성찰과 메타인지 ㅇㅈ
-
컴잘알들 ㄱㄱ 8
노트북 비싸게 사기 (갤5PRO) VS 노트북 적당히 쓰고 (파빌리온) 데스크탑...
-
답지풀이말고 천재적인 풀이같은거 있잔아 굳이 n축같은 교육과정 외 스킬 안...
-
?
-
과외 가자... 6
호르몬 댕3끼..
-
"중앙선관위 연수원서 중국인 99명 체포해서 오키나와로 이송" 보도 나와 7
중앙선거관리위원회 연수원에서 체포된 중국인들이 주일미군기지로 압송됐다는 보도가...
-
이거라도줘라..ㅜㅜ
-
What's up, guys? This is Ryan from Centum...
-
올바른 방향 3
주식하면서 느낀건데 그게 줠라 어려운거임 그거만 알면 워렌버핏 수익률 넘기는건...
-
어디있는거고 ㅣ
-
저능부엉이랑 ㄴㄱ있더라
-
시대기숙 이야기가 없어서 일단 강대 의대관 기숙 신청하려는데 자율선택은 보통 어떻게...
-
내가 뒤져서 영혼 상태로 막 돌아다니는 꿈 꿨음 그러다 헉!!! 하면서 일어났는데...
-
마라탕 먹어야지 0
기름진거 먹지 말랬는데
-
요듣노 0
호시마치 스이세이의 길동무 노래 너무 좋음
-
조발하는꿈꿨음 0
어림도없지
문제 푸는데 큰 지장있는건 아니겟...지만? g (0)>0 입니다
풀이좀 올려주세요
일단 g (-1)=0, f(x)=f (x) 놓고 시작
(가)조건에서 f (3)=|f'(3)|>=0이므로 결국 f (3)>=0
(나)조건 부등식 왼쪽은 정적분~급수에서 오른쪽 높이잡기한것
거기에 리미트 n무한대 붙이면 바로 오른쪽 식과 똑같이 정적분됨
근데 오른쪽 높이잡기 한게 정적분 값보다 작으려면 그함수는 감소함수여야함
(증가함수면 오른쪽 높이잡기한게 정적분 보다큼)
근데 a,h에 따라 g (x)는 양의실수에서 항상 감소
따라서 x> 에서 g'(x)=f(x)<=0
이제 (가), (나)조건을 합치면 x>0에서 f (x)<=0이어야 되는데 f (3)>=0이므로
f (3)=f' (3)=0이 되야하고 (0에서 극대값이고 그값이 x축과 접함)
f는 최고차항이 음수인 삼차함수 그래프
g (x)는 도함수인 f (x)그래프에 따라 개형을 그리면 최고차항이 음수이고
x=0에서 극대값을 가지고 g (x)=0이 x=3에서 삼중근,x=-1에서 한개 실근을 가져야 |g (x)|가 양의실수에서 미분가능
이제 대입해서 계산하면 답5번
첫줄에 g'(x)=f (x)
도출된 g(x)가 항상 나 조건을 만족하나요? g(x)에서 x=3에서 양음 부호가 바뀌는데 나 조건에서 왼쪽 식에서 a=2 h = 2라고 가정하면 x=2에서 x=4까지의 오른쪽 잡기가 되는데 이때 오른쪽으로 잡아서 생기는 직사각형들의 면적이 x=3 이하에서는 양수이고 x=3 이상에서는 음수인데 이때 x=2에서 x=4까지의 적분값이 크다고 확신할 수 있는지 궁금합니다.
감소하는 형태로 X축 밑으로가면 직사각형의 넓이가 정적분의 넓이 값보다 커지지만 값이 음수이므로 필연적으로 항상 작을 수 밖에 없습니다
아 그렇네요 감사합니다.
댓글다신줄 몰랐네요..ㅈㅅ알람이 한번만 떠서 달빛님이 잘 설명해드림 ㅇㅇ
만약 f의 중근아닌 또 다른 실근이 x>0에서 존재하면 위의 해설과는 다른 결과를 낳을 수도 있지 않나요?
중근아닌 실근이 x>0에서 존재하면 양의실수에서 f (×)<=0라는 조건을 만족시키지 않으니 실근한개는 음수에서 생겨야 하겠져
아 g(x)가 항상 감소하니 맞군요
이 문제 (가) 표현이 마음에 드네요 평소에도 이런 표현으로 문제 나오지 않을까 생각했던 부분인데 굉장하십니다 ㅋㅋ
뭘요 ㅋㅋ 작년수능b 30번 f'(x)=무리식>=0 보고 좋아보여서 절댓값으로 바꿔본 거 뿐이에요
미적자작문제 검색하다 풀어봤는데 정말 좋네요^^
미적분 자작문제 시간되실때 더 올려주세요!ㅎㅎ
문제 되게 좋네요~
감사합니다 자주풀러오세요